983 resultados para SNP arrays
Resumo:
While it is widely acknowledged that the ubiquitin-proteasome system plays an important role in transcription, little is known concerning the mechanistic basis, in particular the spatial organization of proteasome-dependent proteolysis at the transcription site. Here, we show that proteasomal activity and tetraubiquitinated proteins concentrate to nucleoplasmic microenvironments in the euchromatin. Such proteolytic domains are immobile and distinctly positioned in relation to transcriptional processes. Analysis of gene arrays and early genes in Caenorhabditis elegans embryos reveals that proteasomes and proteasomal activity are distantly located relative to transcriptionally active genes. In contrast, transcriptional inhibition generally induces local overlap of proteolytic microdomains with components of the transcription machinery and degradation of RNA polymerase II. The results establish that spatial organization of proteasomal activity differs with respect to distinct phases of the transcription cycle in at least some genes, and thus might contribute to the plasticity of gene expression in response to environmental stimuli.
Resumo:
Dynamic adaptations of one"s behavior by means of performance monitoring are a central function of the human executive system, that underlies considerable interindividual variation. Converging evidence from electrophysiological and neuroimaging studies in both animals and humans hints atthe importance ofthe dopaminergic system forthe regulation of performance monitoring. Here, we studied the impact of two polymorphisms affecting dopaminergic functioning in the prefrontal cortex [catechol-O-methyltransferase (COMT) Val108/158Met and dopamine D4 receptor (DRD4) single-nucleotide polymorphism (SNP)-521] on neurophysiological correlates of performance monitoring. We applied a modified version of a standard flanker task with an embedded stop-signal task to tap into the different functions involved, particularly error monitoring, conflict detection and inhibitory processes. Participants homozygous for the DRD4 T allele produced an increased error-related negativity after both choice errors and failed inhibitions compared with C-homozygotes. This was associated with pronounced compensatory behavior reflected in higher post-error slowing. No group differences were seen in the incompatibility N2, suggesting distinct effects of the DRD4 polymorphism on error monitoring processes. Additionally, participants homozygous for the COMTVal allele, with a thereby diminished prefrontal dopaminergic level, revealed increased prefrontal processing related to inhibitory functions, reflected in the enhanced stop-signal-related components N2 and P3a. The results extend previous findings from mainly behavioral and neuroimaging data on the relationship between dopaminergic genes and executive functions and present possible underlying mechanisms for the previously suggested association between these dopaminergic polymorphisms and psychiatric disorders as schizophrenia or attention deficit hyperactivity disorder.
A pilot study identifying a set of microRNAs as precise diagnostic biomarkers of acute kidney injury
Resumo:
In the last decade, Acute Kidney Injury (AKI) diagnosis and therapy have not notably improved probably due to delay in the diagnosis, among other issues. Precocity and accuracy should be critical parameters in novel AKI biomarker discovery. microRNAs are key regulators of cell responses to many stimuli and they can be secreted to the extracellular environment. Therefore, they can be detected in body fluids and are emerging as novel disease biomarkers. We aimed to identify and validate serum miRNAs useful for AKI diagnosis and management. Using qRT-PCR arrays in serum samples, we determined miRNAs differentially expressed between AKI patients and healthy controls. Statistical and target prediction analysis allowed us to identify a panel of 10 serum miRNAs. This set was further validated, by qRT-PCR, in two independent cohorts of patients with relevant morbi-mortality related to AKI: Intensive Care Units (ICU) and Cardiac Surgery (CS). Statistical correlations with patient clinical parameter were performed. Our results demonstrated that the 10 selected miRNAs (miR-101-3p, miR-127-3p, miR-210-3p, miR-126-3p, miR-26b-5p, miR-29a-3p, miR-146a-5p, miR-27a-3p, miR-93-3p and miR-10a-5p) were diagnostic biomarkers of AKI in ICU patients, exhibiting areas under the curve close to 1 in ROC analysis. Outstandingly, serum miRNAs estimated before CS predicted AKI development later on, thus becoming biomarkers to predict AKI predisposition. Moreover, after surgery, the expression of the miRNAs was modulated days before serum creatinine increased, demonstrating early diagnostic value. In summary, we have identified a set of serum miRNAs as AKI biomarkers useful in clinical practice, since they demonstrate early detection and high diagnostic value and they recognize patients at risk.
Resumo:
Next-generation sequencing (NGS) technologies have become the standard for data generation in studies of population genomics, as the 1000 Genomes Project (1000G). However, these techniques are known to be problematic when applied to highly polymorphic genomic regions, such as the human leukocyte antigen (HLA) genes. Because accurate genotype calls and allele frequency estimations are crucial to population genomics analyses, it is important to assess the reliability of NGS data. Here, we evaluate the reliability of genotype calls and allele frequency estimates of the single-nucleotide polymorphisms (SNPs) reported by 1000G (phase I) at five HLA genes (HLA-A, -B, -C, -DRB1, and -DQB1). We take advantage of the availability of HLA Sanger sequencing of 930 of the 1092 1000G samples and use this as a gold standard to benchmark the 1000G data. We document that 18.6% of SNP genotype calls in HLA genes are incorrect and that allele frequencies are estimated with an error greater than ±0.1 at approximately 25% of the SNPs in HLA genes. We found a bias toward overestimation of reference allele frequency for the 1000G data, indicating mapping bias is an important cause of error in frequency estimation in this dataset. We provide a list of sites that have poor allele frequency estimates and discuss the outcomes of including those sites in different kinds of analyses. Because the HLA region is the most polymorphic in the human genome, our results provide insights into the challenges of using of NGS data at other genomic regions of high diversity.
Resumo:
Puhelinmuistio on yksi matkapuhelimen käytetyimmistä ominaisuuksista. Puhelinmuistion tulee siksi olla kaikissa tilanteissa mahdollisimman nopeasti käytettävissä. Tämä edellyttää puhelinmuistiopalvelimelta tehokkaita tietorakenteita ja lajittelualgoritmeja. Nokian matkapuhelimissa puhelinmuistiopalvelin käyttää hakurakenteena järjestettyjä taulukoita. Työn tavoitteena oli kehittää puhelinmuistiopalvelimen hakutaulukoiden lajittelu mahdollisimman nopeaksi. Useita eri lajittelualgoritmeja vertailtiin ja niiden suoritusaikoja analysoitiin eri tilanteissa. Insertionsort-lajittelualgoritmin todettiin olevan nopein algoritmi lähes järjestyksessä olevien taulukoiden lajitteluun. Analyysin perusteella Quicksort-algoritmi lajittelee nopeimmin satunnaisessa järjestyksessä olevat taulukot. Quicksort-insertionsort –hybridialgoritmin havaittiin olevan paras lajittelualgoritmi puhelinmuistion lajitteluun. Sopivalla parametroinnilla tämä algoritmi on nopea satunnaisessa järjestyksessä olevalle aineistolle. Se kykenee hyödyntämään lajiteltavassa aineistossa valmiina olevaa järjestystä. Algoritmi ei kasvata merkittävästi muistinkulutusta. Uuden algoritmin ansiosta hakutaulukoiden lajittelu nopeutuu parhaimmillaan useita kymmeniä prosentteja.
Resumo:
BACKGROUND AND PURPOSE: Transgenic mice overexpressing Notch2 in the uvea exhibit a hyperplastic ciliary body leading to increased IOP and glaucoma. The aim of this study was to investigate the possible presence of NOTCH2 variants in patients with primary open-angle glaucoma (POAG). METHODS: We screened DNA samples from 130 patients with POAG for NOTCH2 variants by denaturing high-performance liquid chromatography after PCR amplification and validated our data by direct Sanger sequencing. RESULTS: No mutations were observed in the coding regions of NOTCH2 or in the splice sites. 19 known SNPs (single nucleotide polymorphisms) were detected. An SNP located in intron 24, c.[4005+45A>G], was seen in 28.5% of the patients (37/130 patients). As this SNP is reported to have a minor allele frequency of 7% in the 1000 genomes database, it could be associated with POAG. However, we evaluated its frequency in an ethnic-matched control group of 96 subjects unaffected by POAG and observed a frequency of 29%, indicating that it was not related to POAG. CONCLUSION: NOTCH2 seemed to be a good candidate for POAG as it is expressed in the anterior segment in the human eye. However, mutational analysis did not show any causative mutation. This study also shows that proper ethnic-matched control groups are essential in association studies and that values given in databases are sometimes misleading.
Resumo:
Introduction: Germline variants in TP63 have been consistently associated with several tumors, including bladder cancer, indicating the importance of TP53 pathway in cancer genetic susceptibility. However, variants in other related genes, including TP53 rs1042522 (Arg72Pro), still present controversial results. We carried out an in depth assessment of associations between common germline variants in the TP53 pathway and bladder cancer risk. Material and Methods: We investigated 184 tagSNPs from 18 genes in 1,058 cases and 1,138 controls from the Spanish Bladder Cancer/EPICURO Study. Cases were newly-diagnosed bladder cancer patients during 1998–2001. Hospital controls were age-gender, and area matched to cases. SNPs were genotyped in blood DNA using Illumina Golden Gate and TaqMan assays. Cases were subphenotyped according to stage/grade and tumor p53 expression. We applied classical tests to assess individual SNP associations and the Least Absolute Shrinkage and Selection Operator (LASSO)-penalized logistic regression analysis to assess multiple SNPs simultaneously. Results: Based on classical analyses, SNPs in BAK1 (1), IGF1R (5), P53AIP1 (1), PMAIP1 (2), SERINPB5 (3), TP63 (3), and TP73 (1) showed significant associations at p-value#0.05. However, no evidence of association, either with overall risk or with specific disease subtypes, was observed after correction for multiple testing (p-value$0.8). LASSO selected the SNP rs6567355 in SERPINB5 with 83% of reproducibility. This SNP provided an OR = 1.21, 95%CI 1.05–1.38, p-value = 0.006, and a corrected p-value = 0.5 when controlling for over-estimation. Discussion: We found no strong evidence that common variants in the TP53 pathway are associated with bladder cancer susceptibility. Our study suggests that it is unlikely that TP53 Arg72Pro is implicated in the UCB in white Europeans. SERPINB5 and TP63 variation deserve further exploration in extended studies.
Resumo:
Introduction. Genetic epidemiology is focused on the study of the genetic causes that determine health and diseases in populations. To achieve this goal a common strategy is to explore differences in genetic variability between diseased and nondiseased individuals. Usual markers of genetic variability are single nucleotide polymorphisms (SNPs) which are changes in just one base in the genome. The usual statistical approach in genetic epidemiology study is a marginal analysis, where each SNP is analyzed separately for association with the phenotype. Motivation. It has been observed, that for common diseases the single-SNP analysis is not very powerful for detecting genetic causing variants. In this work, we consider Gene Set Analysis (GSA) as an alternative to standard marginal association approaches. GSA aims to assess the overall association of a set of genetic variants with a phenotype and has the potential to detect subtle effects of variants in a gene or a pathway that might be missed when assessed individually. Objective. We present a new optimized implementation of a pair of gene set analysis methodologies for analyze the individual evidence of SNPs in biological pathways. We perform a simulation study for exploring the power of the proposed methodologies in a set of scenarios with different number of causal SNPs under different effect sizes. In addition, we compare the results with the usual single-SNP analysis method. Moreover, we show the advantage of using the proposed gene set approaches in the context of an Alzheimer disease case-control study where we explore the Reelin signal pathway.
Resumo:
There is great scientific and popular interest in understanding the genetic history of populations in the Americas. We wish to understand when different regions of the continent were inhabited, where settlers came from, and how current inhabitants relate genetically to earlier populations. Recent studies unraveled parts of the genetic history of the continent using genotyping arrays and uniparental markers. The 1000 Genomes Project provides a unique opportunity for improving our understanding of population genetic history by providing over a hundred sequenced low coverage genomes and exomes from Colombian (CLM), Mexican-American (MXL), and Puerto Rican (PUR) populations. Here, we explore the genomic contributions of African, European, and especially Native American ancestry to these populations. Estimated Native American ancestry is 48% in MXL, 25% in CLM, and 13% in PUR. Native American ancestry in PUR is most closely related to populations surrounding the Orinoco River basin, confirming the Southern American ancestry of the Taíno people of the Caribbean. We present new methods to estimate the allele frequencies in the Native American fraction of the populations, and model their distribution using a demographic model for three ancestral Native American populations. These ancestral populations likely split in close succession: the most likely scenario, based on a peopling of the Americas 16 thousand years ago (kya), supports that the MXL Ancestors split 12.2kya, with a subsequent split of the ancestors to CLM and PUR 11.7kya. The model also features effective populations of 62,000 in Mexico, 8,700 in Colombia, and 1,900 in Puerto Rico. Modeling Identity-by-descent (IBD) and ancestry tract length, we show that post-contact populations also differ markedly in their effective sizes and migration patterns, with Puerto Rico showing the smallest effective size and the earlier migration from Europe. Finally, we compare IBD and ancestry assignments to find evidence for relatedness among European founders to the three populations.
Resumo:
Context.Massive stars form in dense and massive molecular cores. The exact formation mechanism is unclear, but it is possible that some massive stars are formed by processes similar to those that produce the low-mass stars, with accretion/ejection phenomena occurring at some point of the evolution of the protostar. This picture seems to be supported by the detection of a collimated stellar wind emanating from the massive protostar IRAS 16547-4247. A triple radio source is associated with the protostar: a compact core and two radio lobes. The emission of the southern lobe is clearly non-thermal. Such emission is interpreted as synchrotron radiation produced by relativistic electrons locally accelerated at the termination point of a thermal jet. Since the ambient medium is determined by the properties of the molecular cloud in which the whole system is embedded, we can expect high densities of particles and infrared photons. Because of the confirmed presence of relativistic electrons, inverse Compton and relativistic Bremsstrahlung interactions are unavoidable. Aims.We aim to make quantitative predictions of the spectral energy distribution of the non-thermal spots generated by massive young stellar objects, with emphasis on the particular case of IRAS 16547-4247. Methods.We study the high-energy emission generated by the relativistic electrons which produce the non-thermal radio source in IRAS 16547-4247. We also study the result of proton acceleration at the terminal shock of the thermal jet and make estimates of the secondary gamma rays and electron-positron pairs produced by pion decay. Results.We present spectral energy distributions for the southern lobe of IRAS 16547-4247, for a variety of conditions. We show that high-energy emission might be detectable from this object in the gamma-ray domain. The source may also be detectable in X-rays through long exposures with current X-ray instruments. Conclusions.Gamma-ray telescopes such as GLAST, and even ground-based Cherenkov arrays of new generation can be used to study non-thermal processes occurring during the formation of massive stars.
Resumo:
Background: Differences in the distribution of genotypes between individuals of the same ethnicity are an important confounder factor commonly undervalued in typical association studies conducted in radiogenomics. Objective: To evaluate the genotypic distribution of SNPs in a wide set of Spanish prostate cancer patients for determine the homogeneity of the population and to disclose potential bias. Design, Setting, and Participants: A total of 601 prostate cancer patients from Andalusia, Basque Country, Canary and Catalonia were genotyped for 10 SNPs located in 6 different genes associated to DNA repair: XRCC1 (rs25487, rs25489, rs1799782), ERCC2 (rs13181), ERCC1 (rs11615), LIG4 (rs1805388, rs1805386), ATM (rs17503908, rs1800057) and P53 (rs1042522). The SNP genotyping was made in a Biotrove OpenArrayH NT Cycler. Outcome Measurements and Statistical Analysis: Comparisons of genotypic and allelic frequencies among populations, as well as haplotype analyses were determined using the web-based environment SNPator. Principal component analysis was made using the SnpMatrix and XSnpMatrix classes and methods implemented as an R package. Non-supervised hierarchical cluster of SNP was made using MultiExperiment Viewer. Results and Limitations: We observed that genotype distribution of 4 out 10 SNPs was statistically different among the studied populations, showing the greatest differences between Andalusia and Catalonia. These observations were confirmed in cluster analysis, principal component analysis and in the differential distribution of haplotypes among the populations. Because tumor characteristics have not been taken into account, it is possible that some polymorphisms may influence tumor characteristics in the same way that it may pose a risk factor for other disease characteristics. Conclusion: Differences in distribution of genotypes within different populations of the same ethnicity could be an important confounding factor responsible for the lack of validation of SNPs associated with radiation-induced toxicity, especially when extensive meta-analysis with subjects from different countries are carried out.
Resumo:
BACKGROUND: Obesity has been shown to be associated with depression and it has been suggested that higher body mass index (BMI) increases the risk of depression and other common mental disorders. However, the causal relationship remains unclear and Mendelian randomisation, a form of instrumental variable analysis, has recently been employed to attempt to resolve this issue. AIMS: To investigate whether higher BMI increases the risk of major depression. METHOD: Two instrumental variable analyses were conducted to test the causal relationship between obesity and major depression in RADIANT, a large case-control study of major depression. We used a single nucleotide polymorphism (SNP) in FTO and a genetic risk score (GRS) based on 32 SNPs with well-established associations with BMI. RESULTS: Linear regression analysis, as expected, showed that individuals carrying more risk alleles of FTO or having higher score of GRS had a higher BMI. Probit regression suggested that higher BMI is associated with increased risk of major depression. However, our two instrumental variable analyses did not support a causal relationship between higher BMI and major depression (FTO genotype: coefficient -0.03, 95% CI -0.18 to 0.13, P = 0.73; GRS: coefficient -0.02, 95% CI -0.11 to 0.07, P = 0.62). CONCLUSIONS: Our instrumental variable analyses did not support a causal relationship between higher BMI and major depression. The positive associations of higher BMI with major depression in probit regression analyses might be explained by reverse causality and/or residual confounding.
Resumo:
INTRODUCTION: The acute gout flare results from a localised self-limiting innate immune response to monosodium urate (MSU) crystals deposited in joints in hyperuricaemic individuals. Activation of the caspase recruitment domain-containing protein 8 (CARD8) NOD-like receptor pyrin-containing 3 (NLRP3) inflammasome by MSU crystals and production of mature interleukin-1β (IL-1β) is central to acute gouty arthritis. However very little is known about genetic control of the innate immune response involved in acute gouty arthritis. Therefore our aim was to test functional single nucleotide polymorphism (SNP) variants in the toll-like receptor (TLR)-inflammasome-IL-1β axis for association with gout. METHODS: 1,494 gout cases of European and 863 gout cases of New Zealand (NZ) Polynesian (Māori and Pacific Island) ancestry were included. Gout was diagnosed by the 1977 ARA gout classification criteria. There were 1,030 Polynesian controls and 10,942 European controls including from the publicly-available Atherosclerosis Risk in Communities (ARIC) and Framingham Heart (FHS) studies. The ten SNPs were either genotyped by Sequenom MassArray or by Affymetrix SNP array or imputed in the ARIC and FHS datasets. Allelic association was done by logistic regression adjusting by age and sex with European and Polynesian data combined by meta-analysis. Sample sets were pooled for multiplicative interaction analysis, which was also adjusted by sample set. RESULTS: Eleven SNPs were tested in the TLR2, CD14, IL1B, CARD8, NLRP3, MYD88, P2RX7, DAPK1 and TNXIP genes. Nominally significant (P < 0.05) associations with gout were detected at CARD8 rs2043211 (OR = 1.12, P = 0.007), IL1B rs1143623 (OR = 1.10, P = 0.020) and CD14 rs2569190 (OR = 1.08; P = 0.036). There was significant multiplicative interaction between CARD8 and IL1B (P = 0.005), with the IL1B risk genotype amplifying the risk effect of CARD8. CONCLUSION: There is evidence for association of gout with functional variants in CARD8, IL1B and CD14. The gout-associated allele of IL1B increases expression of IL-1β - the multiplicative interaction with CARD8 would be consistent with a synergy of greater inflammasome activity (resulting from reduced CARD8) combined with higher levels of pre-IL-1β expression leading to increased production of mature IL-1β in gout.
Resumo:
The untargeted integration of foreign DNA into the mammalian cell genome, extensively used in gene therapy and biotechnology, remains an incompletely understood process. It is believed to be based on cellular DNA double strand break (DSB) repair machinery and to involve two major steps: i) the formation of long gene arrays (concatemers), and ii) recombination of the resulting concatemer with the genome. The main DSB repair pathways in eukaryotes include non-homologous end-joining (NHEJ), homologous recombination (HR), and microhomology-mediated end-joining (MMEJ). However, it is still not clear, which of these pathways are responsible for transgene integration. Here, we show that NHEJ is not the primary pathway used by mammalian cells in the transgene integration process, while the components of the HR pathway seem to be important for genomic integration but not concatemerization. Instead, concatemer formation appears to be mediated by a subset of the MMEJ pathway, termed synthesis-dependent MMEJ (SD-MMEJ). This mechanism also seems to be preferentially used for plasmid integration into the genome, as confirmed by the analysis of plasmid-to-genome junction sequences, which were found to display an SD-MMEJ pattern. Therefore, we propose the existence of two distinct SD-MMEJ subpathways, relying on different subsets of enzymes. One of these mechanisms appears to be responsible for concatemerization, while the other mechanism, partially dependent in HR enzymes, seems to mediate recombination with the genome. Previous studies performed by our group suggested that matrix attachment regions (MARs), which are epigenetic regulatory DNA elements that participate in the formation of chromatin boundaries and augment transcription, may mediate increased plasmid integration into the genome of CHO cells by stimulating DNA recombination. In the present work, we demonstrate that MAR-mediated plasmid integration results from the enhanced SD-MMEJ pathway. Analysis of transgene integration loci and junction DNA sequences validated the prevalent use of this pathway by the MAR elements to target plasmid DNA into gene-rich areas of the CHO genome. We propose that this finding should in the future help to engineer cells for improved recombinant protein production. In addition to investigating the process of transgene integration, we designed recombination assays to better characterize the components of the MMEJ and SD-MMEJ pathways. We also used CHO cells expressing cycle-sensitive reporter genes to demonstrate a potential role of HR proteins in the cell cycle regulation.
Resumo:
We have investigated the behavior of bistable cells made up of four quantum dots and occupied by two electrons, in the presence of realistic confinement potentials produced by depletion gates on top of a GaAs/AlGaAs heterostructure. Such a cell represents the basic building block for logic architectures based on the concept of quantum cellular automata (QCA) and of ground state computation, which have been proposed as an alternative to traditional transistor-based logic circuits. We have focused on the robustness of the operation of such cells with respect to asymmetries derived from fabrication tolerances. We have developed a two-dimensional model for the calculation of the electron density in a driven cell in response to the polarization state of a driver cell. Our method is based on the one-shot configuration-interaction technique, adapted from molecular chemistry. From the results of our simulations, we conclude that an implementation of QCA logic based on simple ¿hole arrays¿ is not feasible, because of the extreme sensitivity to fabrication tolerances. As an alternative, we propose cells defined by multiple gates, where geometrical asymmetries can be compensated for by adjusting the bias voltages. Even though not immediately applicable to the implementation of logic gates and not suitable for large scale integration, the proposed cell layout should allow an experimental demonstration of a chain of QCA cells.