976 resultados para SEPTAL CHOLINERGIC NEURONS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A regulatable retroviral vector in which the v-myc oncogene is driven by a tetracycline-controlled transactivator and a human cytomegalovirus minimal promoter fused to a tet operator sequence was used for conditional immortalization of adult rat neuronal progenitor cells. A single clone, HC2S2, was isolated and characterized. Two days after the addition of tetracycline, the HC2S2 cells stopped proliferating, began to extend neurites, and expressed the neuronal markers tau, NeuN, neurofilament 200 kDa, and glutamic acid decarboxylase in accordance with the reduced production of the v-myc oncoprotein. Differentiated HC2S2 cells expressed large sodium and calcium currents and could fire regenerative action potentials. These results suggest that the suppression of the v-myc oncogene may be sufficient to make proliferating cells exit from cell cycles and induce terminal differentiation. The HC2S2 cells will be valuable for studying the differentiation process of neurons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We used [3H]thymidine to document the birth of neurons and their recruitment into the hippocampal complex (HC) of juvenile (4.5 months old) and adult blackcapped chickadees (Parus atricapillus) living in their natural surroundings. Birds received a single dose of [3H]thymidine in August and were recaptured and killed 6 weeks later, in early October. All brains were stained with Cresyl violet, a Nissl stain. The boundaries of the HC were defined by reference to the ventricular wall, the brain surface, or differences in neuronal packing density. The HC of juveniles was as large as or larger than that of adults and packing density of HC neurons was 31% higher in juveniles than in adults. Almost all of the 3H-labeled HC neurons were found in a 350-m-wide layer of tissue adjacent to the lateral ventricle. Within this layer the fraction of 3H-labeled neurons was 50% higher in juveniles than in adults. We conclude that the HC of juvenile chickadees recruits more neurons and has more neurons than that of adults. We speculate that juveniles encounter greater environmental novelty than adults and that the greater number of HC neurons found in juveniles allows them to learn more than adults. At a more general level, we suggest that (i) long-term learning alters HC neurons irreversibly; (ii) sustained hippocampal learning requires the periodic replacement of HC neurons; (iii) memories coded by hippocampal neurons are transferred elsewhere before the neurons are replaced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Apolipoprotein E (apoE) is critical in the modulation of cholesterol and phospholipid transport between cells of different types. Human apoE is a polymorphic protein with three common alleles, APO epsilon 2, APO epsilon 3, and APO epsilon 4. ApoE4 is associated with sporadic and late-onset familial Alzheimer disease (AD). Gene dose was shown to have an effect on risk of developing AD, age of onset, accumulation of senile plaques in the brain, and reduction of choline acetyltransferase (ChAT) activity in the hippocampus of AD subjects. To characterize the possible impact of the apoE4 allele on cholinergic markers in AD, we examined the effect of apoE4 allele copy number on pre- and postsynaptic markers of cholinergic activity. ApoE4 allele copy number showed an inverse relationship with residual brain ChAT activity and nicotinic receptor binding sites in both the hippocampal formation and the temporal cortex of AD subjects. AD cases lacking the apoE4 allele showed ChAT activities close or within age-matched normal control values. The effect of the apoE4 allele on cholinomimetic drug responsiveness was assessed next in a group (n = 40) of AD patients who completed a double-blind, 30-week clinical trial of the cholinesterase inhibitor tacrine. Results showed that > 80% of apoE4-negative AD patients showed marked improvement after 30 weeks as measured by the AD assessment scale (ADAS), whereas 60% of apoE4 carriers had ADAS scores that were worse compared to baseline. These results strongly support the concept that apoE4 plays a crucial role in the cholinergic dysfunction associated with AD and may be a prognostic indicator of poor response to therapy with acetylcholinesterase inhibitors in AD patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When performed at increased external [Ca2+]/[Mg2+] ratio (2.5 mM/0.5 mM), temporary block of A1 adenosine receptors in hippocampus [by 8-cyclopentyltheophylline (CPT)] leads to a dramatic and irreversible change in the excitatory postsynaptic current (EPSC) evoked by Schaffer collateral/commissural (SCC) stimulation and recorded by in situ patch clamp in CA1 pyramidal neurons. The duration of the EPSC becomes stimulus dependent, increasing with increase in stimulus strength. The later occurring component of the EPSC is carried through N-methyl-D-aspartate (NMDA) receptor-operated channels but disappears under either the NMDA antagonist 2-amino-5-phosphonovaleric acid (APV) or the non-NMDA antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). These findings indicate that the late component of the SCC-evoked EPSC is polysynaptic: predominantly non-NMDA receptor-mediated SCC inputs excite CA1 neurons that recurrently excite each other by predominantly NDMA receptor-mediated synapses. These recurrent connections are normally silent but become active after CPT treatment, leading to enhancement of the late component of the EPSC. The activity of these connections is maintained for at least 2 hr after CPT removal. When all functional NMDA receptors are blocked by dizocilpine maleate (MK-801), subsequent application of CPT leads to a partial reappearance of NMDA receptor-mediated EPSCs evoked by SCC stimulation, indicating that latent NMDA receptors are recruited. Altogether, these findings indicate the existence of a powerful system of NMDA receptor-mediated synaptic contacts in SCC input to hippocampal CA1 pyramidal neurons and probably also in reciprocal connections between these neurons, which in the usual preparation are kept latent by activity of A1 receptors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have identified another Drosophila GTP-binding protein (G protein) alpha subunit, dGq alpha-3. Transcripts encoding dGq alpha-3 are derived from alternative splicing of the dGq alpha locus previously shown to encode two visual-system-specific transcripts [Lee, Y.-J., Dobbs, M.B., Verardi, M.L. & Hyde, D.R. (1990) Neuron 5, 889-898]. Immunolocalization studies using dGq alpha-3 isoform-specific antibodies and LacZ fusion genes show that dGq alpha-3 is expressed in chemosensory cells of the olfactory and taste structures, including a subset of olfactory and gustatory neurons, and in cells of the central nervous system, including neurons in the lamina ganglionaris. These data are consistent with a variety of roles for dGq alpha-3, including mediating a subset of olfactory and gustatory responses in Drosophila, and supports the idea that some chemosensory responses use G protein-coupled receptors and the second messenger inositol 1,4,5-trisphosphate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

How are long-range axonal projections from the cerebral cortex orchestrated during development? By using both passively and actively transported axonal tracers in fetal and postnatal ferrets, we have analyzed the development of projections from the cortex to a number of thalamic nuclei. We report that the projections of a cortical area to its corresponding thalamic nuclei follow highly cell-specific programs of development. Axons from cells in the deepest layers of the cerebral cortex (layer 6 and superficial subplate neurons) appear to grow very slowly and be delayed for several weeks in the cerebral white matter, reaching the thalamus over a protracted period. Neurons of layer 5, on the other hand, develop their projections much faster; despite being born after the neurons of deeper layers, layer 5 neurons are the first to extend their axons out of the cortical hemisphere and innervate the thalamus. Layer 5 projections are massive in the first postnatal weeks but may become partly eliminated later in development, being overtaken in number by layer 6 cells that constitute the major corticothalamic projection by adulthood. Layer 5 projections are area-specific from the outset and arise as collateral branches of axons directed to the brainstem and spinal cord. Our findings show that the early development of corticofugal connections is determined not by the sequence of cortical neurogenesis but by developmental programs specific for each type of projection neuron. In addition, they demonstrate that in most thalamic nuclei, layer 5 neurons (and not subplate or layer 6 neurons) establish the first descending projections from the cerebral cortex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultra-low picomolar concentrations of the opioid antagonists naloxone (NLX) and naltrexone (NTX) have remarkably potent antagonist actions on excitatory opioid receptor functions in mouse dorsal root ganglion (DRG) neurons, whereas higher nanomolar concentrations antagonize excitatory and inhibitory opioid functions. Pretreatment of naive nociceptive types of DRG neurons with picomolar concentrations of either antagonist blocks excitatory prolongation of the Ca(2+)-dependent component of the action potential duration (APD) elicited by picomolar-nanomolar morphine and unmasks inhibitory APD shortening. The present study provides a cellular mechanism to account for previous reports that low doses of NLX and NTX paradoxically enhance, instead of attenuate, the analgesic effects of morphine and other opioid agonists. Furthermore, chronic cotreatment of DRG neurons with micromolar morphine plus picomolar NLX or NTX prevents the development of (i) tolerance to the inhibitory APD-shortening effects of high concentrations of morphine and (ii) supersensitivity to the excitatory APD-prolonging effects of nanomolar NLX as well as of ultra-low (femtomolar-picomolar) concentrations of morphine and other opioid agonists. These in vitro studies suggested that ultra-low doses of NLX or NTX that selectively block the excitatory effects of morphine may not only enhance the analgesic potency of morphine and other bimodally acting opioid agonists but also markedly attenuate their dependence liability. Subsequent correlative studies have now demonstrated that cotreatment of mice with morphine plus ultra-low-dose NTX does, in fact, enhance the antinociceptive potency of morphine in tail-flick assays and attenuate development of withdrawal symptoms in chronic, as well as acute, physical dependence assays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parathyroid hormone-related protein (PTHrP) is synthesized in the brain, and a single type of cloned receptor for the N-terminal portion of PTHrP and PTH is present in the central nervous system. Nothing is known about the physiological actions or signaling pathways used by PTHrP in the brain. Using cultured rat hippocampal neurons, we demonstrate that N-terminal PTHrP[1-34] and PTH[1-34] signal via cAMP and cytosolic calcium transients. The cAMP response showed strong acute (< or = 6 h) homologous and heterologous desensitization after preincubation with PTHrP or PTH. In contrast, the acute calcium response did not desensitize after preincubation with PTHrP; in fact, preincubation dramatically recruited additional responsive neurons. Unexpectedly, C-terminal PTHrP[107-139], which does not bind or activate the cloned PTH/PTHrP receptor, signaled in neurons via cytosolic calcium but not cAMP. Although some neurons responded to both PTHrP[1-34] and PTHrP[107-139], others responded only to PTHrP[1-34]. We conclude that certain hippocampal neurons exhibit dual signaling in response to PTHrP[1-34] and that some neurons have a receptor for C-terminal PTHrP that signals only via cytosolic calcium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temporal and spatial changes in the intracellular Ca2+ concentration ([Ca2+]i) were examined in dendrites and somata of rat cerebellar Purkinje neurons by combining whole-cell patch-clamp recording and fast confocal laser-scanning microscopy. In cells loaded via the patch pipette with the high-affinity Ca2+ indicator Calcium Green-1 (Kd approximately 220 nM), a single synaptic climbing fiber response, a so-called complex spike, resulted in a transient elevation of [Ca2+]i that showed distinct differences among various subcellular compartments. With conventional imaging, the Ca2+ signals were prominent in the dendrites and almost absent in the soma. Confocal recordings from the somatic region, however, revealed steep transient increases in [Ca2+]i that were confined to a submembrane shell of 2- to 3-microns thickness. In the central parts of the soma [Ca2+]i increases were much slower and had smaller amplitudes. The kinetics and amplitudes of the changes in [Ca2+]i were analyzed in more detail by using the fast, low-affinity Ca2+ indicator Calcium Green-5N (Kd approximately 17 microM). We found that brief depolarizing pulses produced [Ca2+]i increases in a narrow somatic submembrane shell that resembled those seen in the dendrites. These results provide direct experimental evidence that the surface-to-volume ratio is a critical determinant of the spatiotemporal pattern of Ca2+ signals evoked by synaptic activity in neurons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L-Glutamate is the most common excitatory neurotransmitter in the brain and plays a crucial role in neuronal plasticity as well as in neurotoxicity. While a large body of literature describes the induction of immediate-early genes, including c-fos, fosB, c-jun, junB, zif/268, and krox genes by glutamate and agonists in neurons, very little is known about preexisting transcription factors controlling the induction of such genes. This prompted us to investigate whether stimulation of glutamate receptors can activate NF-kappa B, which is present in neurons in either inducible or constitutive form. Here we report that brief treatments with kainate or high potassium strongly activated NF-kappa B in granule cells from rat cerebellum. This was detected at the single cell level by immunostaining with a monoclonal antibody that selectively reacts with the transcriptionally active, nuclear form of NF-kappa B p65. The activation of NF-kappa B could be blocked with the antioxidant pyrrolidine dithiocarbamate, suggesting the involvement of reactive oxygen intermediates. The data may explain the kainate-induced cell surface expression of major histocompatibility complex class I molecules, which are encoded by genes known to be controlled by NF-kappa B. Moreover, NF-kappa B activity was found to change dramatically in neurons during development of the cerebellum between days 5 and 7 after birth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sensing of an odorant by an animal must be a rapid but transient process, requiring an instant response and also a speedy termination of the signal. Previous biochemical and electrophysiological studies suggest that one or more phosphodiesterases (PDEs) may play an essential role in the rapid termination of the odorant-induced cAMP signal. Here we report the molecular cloning, expression, and characterization of a cDNA from rat olfactory epithelium that encodes a member of the calmodulin-dependent PDE family designated as PDE1C. This enzyme shows high affinity for cAMP and cGMP, having a Km for cAMP much lower than that of any other neuronal Ca2+/calmodulin-dependent PDE. The mRNA encoding this enzyme is highly enriched in olfactory epithelium and is not detected in six other tissues tested. However, RNase protection analyses indicate that other alternative splice variants related to this enzyme are expressed in several other tissues. Within the olfactory epithelium, this enzyme appears to be expressed exclusively in the sensory neurons. The high affinity for cAMP of this Ca2+/calmodulin-dependent PDE and the fact that its mRNA is highly concentrated in olfactory sensory neurons suggest an important role for it in a Ca(2+)-regulated olfactory signal termination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuronal proliferation, migration, and differentiation are regulated by the sequential expression of particular genes at specific stages of development. Such processes rely on differential gene expression modulated through second-messenger systems. Early postnatal mouse cerebellar granule cells migrate into the internal granular layer and acquire differentiated properties. The neurotransmitter glutamate has been shown to play an important role in this developmental process. We show here by immunohistochemistry that the RelA subunit of the transcription factor NF-kappa B is present in several areas of the mouse brain. Moreover, immunofluorescence microscopy and electrophoretic mobility-shift assay demonstrate that in cerebellar granule cell cultures derived from 3- to 7-day-old mice, glutamate specifically activates the transcription factor NF-kappa B, as shown by binding of nuclear extract proteins to a synthetic oligonucleotide reproducing the kappa B site of human immunodeficiency virus. The use of different antagonists of the glutamate recpetors indicates that the effect of glutamate occurs mainly via N-methyl-D-aspartate (NMDA)-receptor activation, possibly as a result of an increase in intracellular Ca2+. The synaptic specificity of the effect is strongly suggested by the observation that glutamate failed to activate NF-kappa B in astrocytes, while cytokines, such as interleukin 1 alpha and tumor necrosis factor alpha, did so. The effect of glutamate appears to be developmentally regulated. Indeed, NF-kappa B is found in an inducible form in the cytoplasm of neurons of 3- to 7-day-old mice but is constitutively activated in the nuclei of neurons derived from older pups (8-10 days postnatal). Overall, these observations suggest the existence of a new pathway of trans-synaptic regulation of gene expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In homozygous weaver (wv/wv) mutant mice, nearly 50% of the dopaminergic substantia nigra neurons degenerate by postnatal day 20. We have now determined that the total number of dopaminergic neurons in the ventral midbrains of a litter of obligatory homozygous weaver pups and a litter of normal wild-type control pups indicates that no significant differences are present between groups at birth. To test the hypothesis that the subsequent degeneration of these neurons is linked to their time of origin, [3H]thymidine autoradiography was combined with tyrosine hydroxylase immunocytochemistry to construct neurogenetic timetables on postnatal day 20 in wild-type mice and weaver homozygotes. Both groups have the same span of neurogenesis but have statistically different proportions of neurons generated on specific days. In wild-type mice, more than half of the dopaminergic neurons originate on or after embryonic day 12. In contrast, over two-thirds of the surviving dopaminergic neurons in homozygous weaver mice originate on or before embryonic day 11. Our data suggest that the weaver gene does not interfere with the generation of dopaminergic neurons, but it preferentially kills late-generated dopaminergic neurons between birth and postnatal day 20.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synapsin I, the most abundant of all neuronal phosphoproteins, is enriched in synaptic vesicles. It has been hypothesized to regulate synaptogenesis and neurotransmitter release from adult nerve terminals. The evidence for such roles has been highly suggestive but not compelling. To evaluate the possible involvement of synapsin I in synaptogenesis and in the function of adult synapses, we have generated synapsin I-deficient mice by homologous recombination. We report herein that outgrowth of predendritic neurites and of axons was severely retarded in the hippocampal neurons of embryonic synapsin I mutant mice. Furthermore, synapse formation was significantly delayed in these mutant neurons. These results indicate that synapsin I plays a role in regulation of axonogenesis and synaptogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Alzheimer disease (AD) the amyloid beta-peptide (A beta) accumulates in plaques in the brain. A beta can be neurotoxic by a mechanism involving induction of reactive oxygen species (ROS) and elevation of intracellular free calcium levels ([Ca2+]i). In light of evidence for an inflammatory response in the brain in AD and reports of increased levels of tumor necrosis factor (TNF) in AD brain we tested the hypothesis that TNFs affect neuronal vulnerability to A beta. A beta-(25-35) and A beta-(1-40) induced neuronal degeneration in a concentration- and time-dependent manner. Pretreatment of cultures for 24 hr with TNF-beta or TNF-alpha resulted in significant attenuation of A beta-induced neuronal degeneration. Accumulation of peroxides induced in neurons by A beta was significantly attenuated in TNF-pretreated cultures, and TNFs protected neurons against iron toxicity, suggesting that TNFs induce antioxidant pathways. The [Ca2+]i response to glutamate (quantified by fura-2 imaging) was markedly potentiated in neurons exposed to A beta, and this action of A beta was suppressed in cultures pretreated with TNFs. Electrophoretic mobility-shift assays demonstrated an induction of a kappa beta-binding activity in hippocampal cells exposed to TNFs. Exposure of cultures to I kappa B (MAD3) antisense oligonucleotides, a manipulation designed to induce NF-kappa B, mimicked the protection by TNFs. These data suggest that TNFs protect hippocampal neurons against A beta toxicity by suppressing accumulation of ROS and Ca2+ and that kappa B-dependent transcription is sufficient to mediate these effects. A modulatory role for TNF in the neurodegenerative process in AD is proposed.