936 resultados para Rotating disk electrodes


Relevância:

10.00% 10.00%

Publicador:

Resumo:

(l) The Pacific basin (Pacific area) may be regarded as moving eastwards like a double zip fastener relative to the continents and their respective plates (Pangaea area): opening in the East and closing in the West. This movement is tracked by a continuous mountain belt, the collision ages of which increase westwards. (2) The relative movements between the Pacific area and the Pangaea area in the W-EfE-W direction are generated by tidal forces (principle of hypocycloid gearing), whereby the lower mantle and the Pacific basin or area (Pacific crust = roof of the lower mantle?) rotate somewhat faster eastwards around the Earth's spin axis relative to the upper mantle/crust system with the continents and their respective plates (Pangaea area) (differential rotation). (3) These relative West to East/East to West displacements produce a perpetually existing sequence of distinct styles of opening and closing oeean basins, exemplified by the present East to West arrangement of ocean basins around the globe (Oceanic or Wilson Cycle: Rift/Red Sea style; Atlantic style; Mediterranean/Caribbean style as eastwards propagating tongue of the Pacific basin; Pacific style; Collision/Himalayas style). This sequence of ocean styles, of which the Pacific ocean is a part, moves eastwards with the lower mantle relative to the continents and the upper-mantle/crust of the Pangaea area. (4) Similarly, the collisional mountain belt extending westwards from the equator to the West of the Pacific and representing a chronological sequence of collision zones (sequential collisions) in the wake of the passing of the Pacific basin double zip fastener, may also be described as recording the history of oceans and their continental margins in the form of successive Wilson Cycles. (5) Every 200 to 250 m.y. the Pacific basin double zip fastener, the sequence of ocean styles of the Wilson Cycle and the eastwards growing collisional mountain belt in their wake complete one lap around the Earth. Two East drift lappings of 400 to 500 m.y. produce a two-lap collisional mountain belt spiral around a supercontinent in one hemisphere (North or South Pangaea). The Earth's history is subdivided into alternating North Pangaea growth/South Pangaea breakup eras and South Pangaea growth/North Pangaea breakup eras. Older North and South Pangaeas and their collisional mountain belt spirals may be reconstructed by rotating back the continents and orogenic fragments of a broken spiral (e.g. South Pangaea, Gondwana) to their previous Pangaea growth era orientations. In the resulting collisional mountain belt spiral, pieced together from orogenic segments and fragments, the collision ages have to increase successively towards the West. (6) With its current western margin orientated in a West-East direction North America must have collided during the Late Cretaceous Laramide orogeny with the northern margin of South America (Caribbean Andes) at the equator to the West of the Late Mesozoic Pacific. During post-Laramide times it must have rotated clockwise into its present orientation. The eastern margin of North America has never been attached to the western margin of North Africa but only to the western margin of Europe. (7) Due to migration eastwards of the sequence of ocean styles of the Wilson Cycle, relative to a distinct plate tectonic setting of an ocean, a continent or continental margin, a future or later evolutionary style at the Earth's surface is always depicted in a setting simultaneously developed further to the West and a past or earlier style in a setting simultaneously occurring further to the East. In consequence, ahigh probability exists that up to the Early Tertiary, Greenland (the ArabiaofSouth America?) occupied a plate tectonic setting which is comparable to the current setting of Arabia (the Greenland of Africa?). The Late Cretaceous/Early Tertiary Eureka collision zone (Eureka orogeny) at the northern margin of the Greenland Plate and on some of the Canadian Arctic Islands is comparable with the Middle to Late Tertiary Taurus-Bitlis-Zagros collision zone at the northern margin of the Arabian Plate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solar cells on lightweight and flexible substrates have advantages over glass-or wafer-based photovoltaic devices in both terrestrial and space applications. Here, we report on development of amorphous silicon thin film photovoltaic modules fabricated at maximum deposition temperature of 150 degrees C on 100 mu m thick polyethylene-naphtalate plastic films. Each module of 10 cm x 10 cm area consists of 72 a-Si:H n-i-p rectangular structures with transparent conducting oxide top electrodes with Al fingers and metal back electrodes deposited through the shadow masks. Individual structures are connected in series forming eight rows with connection ports provided for external blocking diodes. The design optimization and device performance analysis are performed using a developed SPICE model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the Pseudo phase plane (PPP) method for detecting the existence of a nanofilm on the nitroazobenzene-modified glassy carbon electrode (NAB-GC) system. This modified electrode systems and nitroazobenze-nanofilm were prepared by the electrochemical reduction of diazonium salt of NAB at the glassy carbon electrodes (GCE) in nonaqueous media. The IR spectra of the bare glassy carbon electrodes (GCE), the NAB-GC electrode system and the organic NAB film were recorded. The IR data of the bare GC, NAB-GC and NAB film were categorized into five series consisting of FILM1, GC-NAB1, GC1; FILM2, GC-NAB2, GC2; FILM3, GC-NAB3, GC3 and FILM4, GC-NAB4, GC4 respectively. The PPP approach was applied to each group of the data of unmodified and modified electrode systems with nanofilm. The results provided by PPP method show the existence of the NAB film on the modified GC electrode.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of fibre reinforced plastics – FRP’s – in structures is under a considerable increase. Advantages of their use are related with their low weight, high strength and stiffness. The improvement of the dynamic characteristics has been profitable for aeronautics, automobile, railway, naval and sporting goods industries. Drilling is a widely used machining technique as it is needed to assemble parts in a structure. This is a unique machining process, characterized by the existence of two different mechanisms: extrusion by the drill chisel edge and cutting by the rotating cutting lips. Drilling raises particular problems that can reduce mechanical and fatigue strength of the parts. In this work, quasi-isotropic hybrid laminates with 25% of carbon fibre reinforced plies and 4 mm thickness are produced, tested and drilled. Three different drill geometries are compared. Results considered are the interlaminar fracture toughness in Mode I – GIc –, thrust force during drilling and delamination extent after drilling. A bearing test is performed to evaluate tool influence on the load carrying capacity of the plate. Results consider the influence of drill geometry on delamination. A correlation linking plate damage to bearing test results is presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the most common problems of rotating machinery is the rotor unbalance. The effects of rotor unbalance can vary from the malfunction of certain equipment to diseases related to the exposure to high vibration levels. However, the balancing procedure is known, it is mandatory to have qualified technicians to perform it. In this sense, the use of virtual balancing experiments is of great interest. The present demo is dedicated to present two different balancing simulators, which can be explored in conjunction, as they have complementary outputs. © 2014 IEEE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Current Electrocardiographic (ECG) signal acquisition methods are generally highly intrusive, as they involve the use of pre-gelled electrodes and cabled sensors placed directly on the person, at the chest or limbs level. Moreover, systems that make use of alternative conductive materials to overcome this issue, only provide heart rate information and not the detailed signal itself. We present a comparison and evaluation of two types of dry electrodes as interface with the skin, targeting wearable and low intrusiveness applications, which enable ECG measurement without the need for any apparatus permanently fitted to the individual. In particular, our approach is targeted at ECG biometrics using signals collected at the hand or finger level. A custom differential circuit with virtual ground was also developed for enhanced usability. Our work builds upon the current stateof-the-art in sensoring devices and processing tools, and enables novel data acquisition settings through the use of dry electrodes. Experimental evaluation was performed for Ag/AgCl and Electrolycra materials, and results show that both materials exhibit adequate performance for the intended application.