962 resultados para Roscommon, Wentworth Dillon, 1633-1685
Resumo:
Gas hydrate samples were recovered from four sites (Sites 994, 995, 996, and 997) along the crest of the Blake Ridge during Ocean Drilling Program (ODP) Leg 164. At Site 996, an area of active gas venting, pockmarks, and chemosynthetic communities, vein-like gas hydrate was recovered from less than 1 meter below seafloor (mbsf) and intermittently through the maximum cored depth of 63 mbsf. In contrast, massive gas hydrate, probably fault filling and/or stratigraphically controlled, was recovered from depths of 260 mbsf at Site 994, and from 331 mbsf at Site 997. Downhole-logging data, along with geochemical and core temperature profiles, indicate that gas hydrate at Sites 994, 995, and 997 occurs from about 180 to 450 mbsf and is dispersed in sediment as 5- to 30-m-thick zones of up to about 15% bulk volume gas hydrate. Selected gas hydrate samples were placed in a sealed chamber and allowed to dissociate. Evolved gas to water volumetric ratios measured on seven samples from Site 996 ranged from 20 to 143 mL gas/mL water to 154 mL gas/mL water in one sample from Site 994, and to 139 mL gas/mL water in one sample from Site 997, which can be compared to the theoretical maximum gas to water ratio of 216. These ratios are minimum gas/water ratios for gas hydrate because of partial dissociation during core recovery and potential contamination with pore waters. Nonetheless, the maximum measured volumetric ratio indicates that at least 71% of the cages in this gas hydrate were filled with gas molecules. When corrections for pore-water contamination are made, these volumetric ratios range from 29 to 204, suggesting that cages in some natural gas hydrate are nearly filled. Methane comprises the bulk of the evolved gas from all sites (98.4%-99.9% methane and 0%-1.5% CO2). Site 996 hydrate contained little CO2 (0%-0.56%). Ethane concentrations differed significantly from Site 996, where they ranged from 720 to 1010 parts per million by volume (ppmv), to Sites 994 and 997, which contained much less ethane (up to 86 ppmv). Up to 19 ppmv propane and other higher homologues were noted; however, these gases are likely contaminants derived from sediment in some hydrate samples. CO2 concentrations are less in gas hydrate than in the surrounding sediment, likely an artifact of core depressurization, which released CO2 derived from dissolved organic carbon (DIC) into sediment. The isotopic composition of methane from gas hydrate ranges from d13C of -62.5 per mil to -70.7 per mil and dD of -175 per mil to -200 per mil and is identical to the isotopic composition of methane from surrounding sediment. Methane of this isotopic composition is mainly microbial in origin and likely produced by bacterial reduction of bicarbonate. The hydrocarbon gases here are likely the products of early microbial diagenesis. The isotopic composition of CO2 from gas hydrate ranges from d13C of -5.7 per mil to -6.9 per mil, about 15 per mil lighter than CO2 derived from nearby sediment.
Resumo:
Sand-silt-clay distribution was determined at Scripps on samples collected at the time the cores were split and described. The sediment classification used here is that of Shepard (1954); sand, silt, and clay boundaries are determined on the basis of the Wentworth (1922) scale. Thus the sand, silt, and clay fractions are composed of particles whose diameters range from 2000 to 62.5 µm, 62.5 to 3.91 µm, and less than 3.91 µm, respectively. This classification is applied regardless of sediment type and origin.
Resumo:
Since being first discovered in the Blake-Bahama region of the west Atlantic in the 1970s (Hollister, Ewing, et al., 1972, doi:10.2973/dsdp.proc.11.1972), submarine gas hydrates have been identified in the continental margin worldwide. Ocean Drilling Program (ODP) Leg 164 was the first drilling designated to study the occurrence and distribution of natural gas hydrates in Blake Ridge where a well developed, distinct BSR (Bottom Simulating Reflector) has been identified (Paull, Matsumoto, Wallace, et al., 1996, doi:10.2973/odp.proc.ir.164.1996). It has been reported there is a prominent discrepancy between the BSR and the base of gas hydrate stability (Paull, Matsumoto, Wallace, et al., 1996, doi:10.2973/odp.proc.ir.164.1996; Ruppel, 1997, doi:10.1130/0091-7613(1997)025<0699:ACTOAT>2.3.CO;2), though theoretically they should be at the same depth. Natural gas hydrate in marine sediments coexists with sediment particles, so detailed delineation of sediment geochemistry will be of benefit to solve this apparent discrepancy. The main objectives of this study are to supply background data of the major chemical compositions of sediments from a hydrated sediment section.
Resumo:
Anaerobic methane oxidation (AMO) was characterized in sediment cores from the Blake Ridge collected during Ocean Drilling Program (ODP) Leg 164. Three independent lines of evidence support the occurrence and scale of AMO at Sites 994 and 995. First, concentration depth profiles of methane from Hole 995B exhibit a region of upward concavity suggestive of methane consumption. Diagenetic modeling of the concentration profile indicates a 1.85-m-thick zone of AMO centered at 21.22 mbsf, with a peak rate of 12.4 nM/d. Second, subsurface maxima in tracer-based sulfate reduction rates from Holes 994B and 995B were observed at depths that coincide with the model-predicted AMO zone. The subsurface zone of sulfate reduction was 2 m thick and had a depth integrated rate that compared favorably to that of AMO (1.3 vs. 1.1 nmol/cm**2/d, respectively). These features suggest close coupling of AMO and sulfate reduction in the Blake Ridge sediments. Third, measured d13CH4 values are lightest at the point of peak model-predicted methane oxidation and become increasingly 13C-enriched with decreasing sediment depth, consistent with kinetic isotope fractionation during bacterially mediated methane oxidation. The isotopic data predict a somewhat (60 cm) shallower maximum depth of methane oxidation than do the model and sulfate reduction data.
Resumo:
Sand-silt-clay distribution was determined on 10-cm**3 sediment samples collected at the time the cores were split and described. The sediment classification used here is that of Shepard (1954), with the sand, silt, and clay boundaries based on the Wentworth (1922) scale. Thus the sand, silt, and clay fractions are composed of particles whose diameters are 2000 to 62.5 µm, 62.5 to 3.91 µm, and less than 3.91 µm, respectively. This classification is applied without regard to sediment type and origin; therefore, the sediment names used in this table may differ from those used elsewhere in this volume; e.g., a silt composed of nannofossils may be called a nannofossil ooze in a site chapter.
Resumo:
Geothermal data obtained during Cruise 12 of the R/V Vityaz-II and published data on heat flux of the Tyrrhenian Sea are analyzed. The thermal field is related to principal tectonic structures of the basin. Distribution of heat flux indicates that the initial stage of rifting occurs in the central basin of the Tyrrhenian Sea.
Resumo:
A unique set of geochemical pore-water data, characterizing the sulfate reduction and uppermost methanogenic zones, has been collected at the Blake Ridge (offshore southeastern North America) from Ocean Drilling Program (ODP) Leg 164 cores and piston cores. The d13C values of dissolved CO2 (sum CO2) are as 13C-depleted as -37.7 per mil PDB (Site 995) at the sulfate-methane interface, reflecting a substantial contribution of isotopically light carbon from methane. Although the geochemical system is complex and difficult to fully quantify, we use two methods to constrain and illustrate the intensity of anaerobic methane oxidation in Blake Ridge sediments. An estimate using a two-component mixing model suggests that ~24% of the carbon residing in the sum CO2 pool is derived from biogenic methane. Independent diagenetic modeling of a methane concentration profile (Site 995) indicates that peak methane oxidation rates approach 0.005 µmol/cm**3/yr, and that anaerobic methane oxidation is responsible for consuming ~35% of the total sulfate flux into the sediments. Thus, anaerobic methane oxidation is a significant biogeochemical sink for sulfate, and must affect interstitial sulfate concentrations and sulfate gradients. Such high proportions of sulfate depletion because of anaerobic methane oxidation are largely undocumented in continental rise sediments with overlying oxic bottom waters. We infer that the additional amount of sulfate depleted through anaerobic methane oxidation, fueled by methane flux from below, causes steeper sulfate gradients above methane-rich sediments. Similar pore water chemistries should occur at other methane-rich, continental-rise settings associated with gas hydrates.