994 resultados para Rocks -- Catalonia -- Sant Feliu de Guíxols
Resumo:
Primary magmatic phases (spinel, olivine, plagioclase, clinopyroxene, amphibole, and biotite) and secondary phyllosilicates (smectite, chlorite-smectite, and celadonite) were analyzed by electron microprobe in alkalic and tholeiitic dolerites and basalts from Ocean Drilling Program Sites 800, 801, and 802. Aphyric alkalic dolerite sills (Hole 800A) and basalt flows (Holes 801B and 801C) share common mineralogical features: matrix feldspars are strongly zoned from labradorite cores to discrete sodic rims of alkali feldspar with a high Or component, which overlaps that of quench microlites in glassy mesostasis; little fractionated clinopyroxenes are Ti-rich diopsides and augites (with marked aegirine-augite rims at Site 801); rare, brown, Fe**3+-rich amphibole is winchite; and late biotites exhibit variable Ti contents. Alkalic rims to feldspars probably developed at the same time as quenched mesostasis feldspars and late-stage magmatic biotite, and represent the buildup of K-rich hydrous fluids during crystallization. Phenocryst phases in primitive mid-ocean ridge tholeiites from Hole 801C (Mg numbers about 70) have extreme compositions with chrome spinel (Cr/Cr + Al ratios about 0.2-0.4), Ni-rich olivine (Fo90), and highly calcic plagioclase (An90). Later glomerophyric clumps of plagioclase (An75-80) and clinopyroxene (diopside-augite) are strongly zoned and probably reflect rapidly changing melt conditions during upward transport, prior to seafloor quenching. In contrast, phenocryst phases (olivine, plagioclase, and clinopyroxene) in the Hole 802A tholeiites show limited variation and do not have such primitive compositions, reflecting the uniform and different chemical composition of all the bulk rocks. Replacive phyllosilicates in both alkalic and tholeiitic basalts include various colored smectites (Fe-, Mg-, and Al-saponites), chlorite-smectite and celadonite. Smectite compositions typically reflect the replaced host composition; glass is replaced by brown Fe-saponites (variable Fe/Mg ratios) and olivine by greenish Mg-saponites (or Al-rich chlorite-smectite).
Resumo:
During the antarctic summer season in 1984 and 1986 field studies and laboratory investigations of the Mesozoic Intrusive Suite of the Palmer Archipel were carried out in cooperation with the Chilean Antarctic Institute and the University of Concepcion, Volcanic formations and intrusive series are the dominant exposed rocks together with very subordinate metasediments. Different petrological and isotopic data allow to divide the Antarctic Intrusive Suite into two intrusive types: a) Palmer Batholith (Lower Cenozoic) b) Costa Danco intrusive rocks (Upper Cretaceous). Both types belong to a calc-alkaline series. The granitoid rocks show an I-type-affinity. Ore minerals (pyrite, chalcopyrite, bornite, covellite, cuprite, pyrrhotite, magnetite and ilmenite) are mainly restricted to the intermediate rock types (e. g. granodiorites}. Propylitisation and kaolinisation are the observed alteration types, which suggest, together with the disseminated and vein-like ore fabrics the comparison with the andean Porphyry-Copper- and vein-type-deposits. The volcanic formations are subdivided into a) the Upper Cretaceous Wiencke Formation, which is composed of andesites and andesitic breccias, and b) into the Jurassic Lautaro Formation with basaltic, andesitic, dacitic and some rhyolitic rocks together with volcanic breccias. These calc-alkaline volcanic rocks apparently are part of an island are. A strong alteration of primary minerals is very common; however, the low ore mineral content does not change significantly within the different alteration types.
Resumo:
An isotope-geochemical study of Eocene-Oligocene magmatic rocks from the Western Kamchatka-Koryak volcanogenic belt revealed lateral heterogeneity of mantle magma sources in its segments: Western Kamchatka, Central Koryak, and Northern Koryak ones. In the Western Kamchatka segment magmatic melts were generated from isotopically heterogeneous (depleted and/or insignificantly enriched) mantle sources significantly contaminated by quartz-feldspathic sialic sediments; higher 87Sr/86Sr (0.70429-0.70564) and lower 143Nd/144Nd [eNd(T) = 0.06-2.9] ratios in volcanic rocks from the Central Koryak segment presumably reflect contribution of an enriched mantle source; high positive eNd(T) and low 87Sr/86Sr ratios in magmatic rocks from the Northern Koryak segment area indicate their derivation from an isotopically depleted mantle source without significant contamination by sialic or mantle material enriched in radiogenic Sr and Nd. Significantly different contamination histories of Eocene-Oligocene mantle magmas in Kamchatka and Koryakia are related to their different thermal regimes: higher heat flow beneath Kamchatka led to crustal melting and contamination of mantle suprasubduction magmas by crustal melts. Cessation of suprasubduction volcanism in the Western Kamchatka segment of the continental margin belt was possibly related to accretion of the Achaivayam-Valagin terrane 40 Ma ago, whereas suprasubduction activity in the Koryak segment stopped due to closure of the Ukelayat basin in Oligocene.
Resumo:
The chemical composition of glass inclusions in phenocrystic plagioclase and pyroxene from Sites 792 and 793, drilled during Ocean Drilling Program Leg 126 in the Bonin Arc, is examined. Immiscible liquid, which is preserved as glass inclusions with unmixed textures in plagioclase, is observed in a high-magnesian andesite, which suggests an important role of liquid immiscibility in the fractionation of high-magnesian andesite. In other andesitic rocks (SiO2 = 57-60 wt%), such unmixed textures of glass inclusions in calcic plagioclase with a similar percentage of An (around 80%) is not found. The degree of fractionation and mixing of liquid are inferred from the glass composition in pyroxene.
Resumo:
Sedimentary cover on the bottom of the Northwest Atlantic Ocean is underlain by Late Jurassic - Cretaceous tholeiite-basalt formation. It consists of come sedimentary formations with different lithologic features and age. Their composition, stratigraphic position and, distribution are described on materials of deep-sea drilling. Mineralogical and geochemical studies of DSDP Leg 43 and Leg 44 holes lead to new ideas about composition and genesis of some sediment types of and their associations. High metal contents in the chalk formation of black clays on the Bermuda Rise probably result from exhalations. Connection of red-colored and speckled deposits with hiatuses in sedimentation is shown. Main stages of geological history of the North American Basin are reflected in accumulation of the followed formations: ancient carbonate formation (Late Jurassic - Early Cretaceous), formation of black clays rich in organic matter (Cretaceous), formation of speckled clays (Late Cretaceous), siliceous-clayey turbidite formation (Eocene), hemipelagic and pelagic clayey formation (Neogene), and terrigenous turbidite formation (Pleistocene).
Resumo:
Middle Cenozoic evolution of magmatism in the Schmidt Peninsula between 37 and 25 Ma began with eruptions of subalkaline and moderately alkaline andesite, latite, trachyandesite, and trachyrhyolite lavas and ended with subvolcanic intrusions of highly alkaline strongly undersaturated essexites. According to trace element data magmatism evolved from melting of a mantle source in the zone of ocean-continent plate convergence to small degree partial melting in the lithospheric mantle at the final stage. This succession is generally typical for Late Cenozoic continental-margin magmatism in the Southeast Russia. Similarity in the Middle and Late Cenozoic stages of magmatism is an evidence for their individual significance.