940 resultados para Robot
Resumo:
We discussed a floating mechanism based on quasi-magnetic levitation method that can be attached at the endpoint of a robot arm in order to construct a novel redundant robot arm for producing compliant motions. The floating mechanism can be composed of magnets and a constraint mechanism such that the repelling force of the magnets floats the endpoint part of the mechanism stable for the guided motions. The analytical and experimental results show that the proposed floating mechanism can produce stable floating motions with small inertia and viscosity. The results also show that the proposed mechanism can detect small force applied to the endpoint part because the friction force of the mechanism is very small.
Resumo:
A low cost, compact embedded design approach for actuating soft robots is presented. The complete fabrication procedure and mode of operation was demonstrated, and the performance of the complete system was also demonstrated by building a microcontroller based hardware system which was used to actuate a soft robot for bending motion. The actuation system including the electronic circuit board and actuation components was embedded in a 3D-printed casing to ensure a compact approach for actuating soft robots. Results show the viability of the system in actuating and controlling siliconebased soft robots to achieve bending motions. Qualitative measurements of uniaxial tensile test, bending distance and pressure were obtained. This electronic design is easy to reproduce and integrate into any specified soft robotic device requiring pneumatic actuation.
Resumo:
We aim to develop an efficient robotic system for stroke rehabilitation, in which a robotic arm moves the hemiplegic upper limb when the patient tries to move it. In order to achieve this goal we have considered a method to detect the patient's intended motion using EEG (Electroencephalogram), and have designed a rehabilitation robot based on a Redundant Drive Method. In this paper, we propose an EEG driven rehabilitation robot system and present initial results evaluating the feasibility of the proposed system.
Resumo:
This paper presents a novel mobile sink area allocation scheme for consumer based mobile robotic devices with a proven application to robotic vacuum cleaners. In the home or office environment, rooms are physically separated by walls and an automated robotic cleaner cannot make a decision about which room to move to and perform the cleaning task. Likewise, state of the art cleaning robots do not move to other rooms without direct human interference. In a smart home monitoring system, sensor nodes may be deployed to monitor each separate room. In this work, a quad tree based data gathering scheme is proposed whereby the mobile sink physically moves through every room and logically links all separated sub-networks together. The proposed scheme sequentially collects data from the monitoring environment and transmits the information back to a base station. According to the sensor nodes information, the base station can command a cleaning robot to move to a specific location in the home environment. The quad tree based data gathering scheme minimizes the data gathering tour length and time through the efficient allocation of data gathering areas. A calculated shortest path data gathering tour can efficiently be allocated to the robotic cleaner to complete the cleaning task within a minimum time period. Simulation results show that the proposed scheme can effectively allocate and control the cleaning area to the robot vacuum cleaner without any direct interference from the consumer. The performance of the proposed scheme is then validated with a set of practical sequential data gathering tours in a typical office/home environment.
Resumo:
Network diagnosis in Wireless Sensor Networks (WSNs) is a difficult task due to their improvisational nature, invisibility of internal running status, and particularly since the network structure can frequently change due to link failure. To solve this problem, we propose a Mobile Sink (MS) based distributed fault diagnosis algorithm for WSNs. An MS, or mobile fault detector is usually a mobile robot or vehicle equipped with a wireless transceiver that performs the task of a mobile base station while also diagnosing the hardware and software status of deployed network sensors. Our MS mobile fault detector moves through the network area polling each static sensor node to diagnose the hardware and software status of nearby sensor nodes using only single hop communication. Therefore, the fault detection accuracy and functionality of the network is significantly increased. In order to maintain an excellent Quality of Service (QoS), we employ an optimal fault diagnosis tour planning algorithm. In addition to saving energy and time, the tour planning algorithm excludes faulty sensor nodes from the next diagnosis tour. We demonstrate the effectiveness of the proposed algorithms through simulation and real life experimental results.
Resumo:
Sociable robots are embodied agents that are part of a heterogeneous society of robots and humans. They Should be able to recognize human beings and each other, and to engage in social, interactions. The use of a robotic architecture may strongly reduce the time and effort required to construct a sociable robot. Such architecture must have structures and mechanisms to allow social interaction. behavior control and learning from environment. Learning processes described oil Science of Behavior Analysis may lead to the development of promising methods and Structures for constructing robots able to behave socially and learn through interactions from the environment by a process of contingency learning. In this paper, we present a robotic architecture inspired from Behavior Analysis. Methods and structures of the proposed architecture, including a hybrid knowledge representation. are presented and discussed. The architecture has been evaluated in the context of a nontrivial real problem: the learning of the shared attention, employing an interactive robotic head. The learning capabilities of this architecture have been analyzed by observing the robot interacting with the human and the environment. The obtained results show that the robotic architecture is able to produce appropriate behavior and to learn from social interaction. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Localization and Mapping are two of the most important capabilities for autonomous mobile robots and have been receiving considerable attention from the scientific computing community over the last 10 years. One of the most efficient methods to address these problems is based on the use of the Extended Kalman Filter (EKF). The EKF simultaneously estimates a model of the environment (map) and the position of the robot based on odometric and exteroceptive sensor information. As this algorithm demands a considerable amount of computation, it is usually executed on high end PCs coupled to the robot. In this work we present an FPGA-based architecture for the EKF algorithm that is capable of processing two-dimensional maps containing up to 1.8 k features at real time (14 Hz), a three-fold improvement over a Pentium M 1.6 GHz, and a 13-fold improvement over an ARM920T 200 MHz. The proposed architecture also consumes only 1.3% of the Pentium and 12.3% of the ARM energy per feature.
Resumo:
Robotic mapping is the process of automatically constructing an environment representation using mobile robots. We address the problem of semantic mapping, which consists of using mobile robots to create maps that represent not only metric occupancy but also other properties of the environment. Specifically, we develop techniques to build maps that represent activity and navigability of the environment. Our approach to semantic mapping is to combine machine learning techniques with standard mapping algorithms. Supervised learning methods are used to automatically associate properties of space to the desired classification patterns. We present two methods, the first based on hidden Markov models and the second on support vector machines. Both approaches have been tested and experimentally validated in two problem domains: terrain mapping and activity-based mapping.
Resumo:
The main objective for this degree project is to implement an Application Availability Monitoring (AAM) system named Softek EnView for Fujitsu Services. The aim of implementing the AAM system is to proactively identify end user performance problems, such as application and site performance, before the actual end users experience them. No matter how well applications and sites are designed and nomatter how well they meet business requirements, they are useless to the end users if the performance is slow and/or unreliable. It is important for the customers to find out whether the end user problems are caused by the network or application malfunction. The Softek EnView was comprised of the following EnView components: Robot, Monitor, Reporter, Collector and Repository. The implemented system, however, is designed to use only some of these EnView elements: Robot, Reporter and depository. Robots can be placed at any key user location and are dedicated to customers, which means that when the number of customers increases, at the sametime the amount of Robots will increase. To make the AAM system ideal for the company to use, it was integrated with Fujitsu Services’ centralised monitoring system, BMC PATROL Enterprise Manager (PEM). That was actually the reason for deciding to drop the EnView Monitor element. After the system was fully implemented, the AAM system was ready for production. Transactions were (and are) written and deployed on Robots to simulate typical end user actions. These transactions are configured to run with certain intervals, which are defined collectively with customers. While they are driven against customers’ applicationsautomatically, transactions collect availability data and response time data all the time. In case of a failure in transactions, the robot immediately quits the transactionand writes detailed information to a log file about what went wrong and which element failed while going through an application. Then an alert is generated by a BMC PATROL Agent based on this data and is sent to the BMC PEM. Fujitsu Services’ monitoring room receives the alert, reacts to it according to the incident management process in ITIL and by alerting system specialists on critical incidents to resolve problems. As a result of the data gathered by the Robots, weekly reports, which contain detailed statistics and trend analyses of ongoing quality of IT services, is provided for the Customers.
Resumo:
The context of this report and the IRIDIA laboratory are described in the preface. Evolutionary Robotics and the box-pushing task are presented in the introduction.The building of a test system supporting Evolutionary Robotics experiments is then detailed. This system is made of a robot simulator and a Genetic Algorithm. It is used to explore the possibility of evolving box-pushing behaviours. The bootstrapping problem is explained, and a novel approach for dealing with it is proposed, with results presented.Finally, ideas for extending this approach are presented in the conclusion.