937 resultados para Rigid
Resumo:
It is shown how the existing theory of the dynamic Kerr effect and nonlinear dielectric relaxation based on the noninertial Brownian rotation of noninteracting rigid dipolar particles may be generalized to take into account interparticle interactions using the Maier-Saupe mean field potential. The results (available in simple closed form) suggest that the frequency dependent nonlinear response provides a method of measuring the Kramers escape rate (or in the analogous problem of magnetic relaxation of fine single domain ferromagnetic particles, the superparamagnetic relaxation time).
Resumo:
Wideband far infrared (FIR) spectra of complex permittivity e(p) of ice are calculated in terms of a simple analytical theory based on the method of dipolar autocorrelation functions. The molecular model represents a revision of the model recently presented for liquid water in Adv. Chem. Phys. 127 (2003) 65. A composite two-fractional model is proposed. The model is characterised by three phenomenological potential wells corresponding to the three FIR bands observed in ice. The first fraction comprises dipoles reorienting in a rather narrow and deep hat-like well; these dipoles generate the librational band centred at the frequency approximate to 880 cm(-1). The second fraction comprises elastically interacting particles; they generate two nearby bands placed around frequency 200 cm(-1). For description of one of these bands the harmonic oscillator (HO) model is used, in which translational oscillations of two charged molecules along the H-bond are considered. The other band is produced by the H-bond stretch, which governs hindered rotation of a rigid dipole. Such a motion and its dielectric response are described in terms of a new cut parabolic (CP) model applicable for any vibration amplitude. The composite hat-HO-CP model results in a smooth epsilon(nu) ice spectrum, which does not resemble the noise-like spectra of ice met in the known literature. The proposed theory satisfactorily agrees with the experimental ice spectrum measured at - 7 degrees C. The calculated longitudinal optic-transverse optic (LO-TO) splitting occurring at approximate to 250 cm(-1) qualitatively agrees with the measured data. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
A broad survey of harmonic dynamics in AB(2) clusters with up to N = 3000 atoms is performed using a simple rigid ion model, with ionic radii selected to give rutile as the ground state structure for the corresponding extended crystal. The vibrational density of states is already close to its bulk counterpart for N similar to 500, with characteristic differences due to surfaces, edges and vertices. Two methods are proposed and tested to map the cluster vibrational states onto the rutile crystal phonons. The net distinction between infrared (IR) active and Raman active modes that exists for bulk rutile becomes more and more blurred as the cluster size is reduced. It is found that, in general, the higher the IR activity of the mode, the more this is affected by the system size. IR active modes are found to spread over a wide frequency range for the finite clusters. Simple models based on either a crude confinement constraint or surface pressure arguments fail to reproduce the results of the calculations. The effects of the stoichiometry and dielectric properties of the surrounding medium on the vibrational properties of the clusters are also investigated.
Resumo:
The objective of the work was to investigate the effect of compliant surfaces on the receptivity and bypass transition of a boundary layer. Hot wire measurements in the pre-transitional and transitional boundary layers on nine different compliant and one rigid surface with identical geometries were made. The experiments were conducted in air and the compliant surfaces were manufactured from gelatine covered by a 10 lm protective PVC film. The laminar boundary layer profiles and growth rate results were the same for all the surfaces. However, the receptivity of the laminar boundary layer to freestream disturbances increased close to the leading edge of each compliant surface. Further downstream the majority of the compliant surfaces were successful in reducing the receptivity to a value below that for the rigid surface. The transition onset position on the compliant surfaces ranged from 3% downstream to 20% upstream of the rigid surface position. It was concluded that compliant surfaces with optimum properties can reduce receptivity and delay transition.
Resumo:
A simple approach is proposed for disturbance attenuation in multivariable linear systems via dynamical output compensators based on complete parametric eigenstructure assignment. The basic idea is to minimise the H-2 norm of the disturbance-output transfer function using the design freedom provided by eigenstructure assignment. For robustness, the closed-loop system is restricted to be nondefective. Besides the design parameters, the closed-loop eigenvalues are also optimised within desired regions on the left-half complex plane to ensure both closed-loop stability and dynamical performance. With the proposed approach, additional closed-loop specifications can be easily achieved. As a demonstration, robust pole assignment, in the sense that the closed-loop eigenvalues are as insensitive as possible to open-loop system parameter perturbations, is treated. Application of the proposed approach to robust control of a magnetic bearing with a pair of opposing electromagnets and a rigid rotor is discussed.
Resumo:
New ionic liquid crystals (including ionic metallomesogens) based oil the pyrrolidinium core are presented. N-Methylpyrrolidine was quaternized with different mesogenic groups connected to a flexible, omega-bromosubstituted alkyl spacer. The length of the flexible alkyl spacer between the cationic head group and the rigid mesogenic group was varied. The substituted pyrrolidinium cations were combined with bromide, bis(trifluoromethylsulfonyl)imide, tetrakis (2-thenoyltrifluoroacetonato)europate(III), and tetrabromouranyl anions. The influence of the type of mesogenic unit, the lengths of the flexible spacer and terminal alkyl chain, the size of the mesogenic group, and the type of anion oil the thermotropic mesomorphic behavior was investigated. Furthermore, the phase behavior was thoroughly compared with the previously reported mesomorphism of N-alkyl-N-methylpyrrolidinium salts. Low-ordered smectic A phases of the de Vries type, smectic C phases, higher-ordered smectic F/I phases, as well its crystal smectic phases (E and G, J, H, or K) were observed and investigated by polarizing optical microscopy, differential scanning calorimetry, and powder X-ray diffraction.
Resumo:
Several personality constructs have been theorised to underlie right-wing authoritarianism (RWA). In samples from New Zealand and Germany (Ns = 218, 259), we tested whether these constructs can account for specific variance in RWA. In both samples, social conformity and personal need for structure were independent predictors of RWA. In Sample 2, where also openness to experience was measured, social conformity and personal need for structure fully mediated the impact of the higher-order factor of openness on RWA. Our results contribute to the integration of current approaches to the personality basis of authoritarianism. and suggest that two distinct personality processes contribute to RWA: An interpersonal process related to social conformity and an intrapersonal process related to rigid cognitive style. Copyright (C) 2009 John Wiley & Sons, Ltd.