977 resultados para Resonances, orbital
Resumo:
The spectrophotometric titration by sodium hydroxide of 5,10,15-triphenyl-20-(4-hydroxyphenyl)porphyrin ((OH)(1)PH2) is studied as a function of solvent composition of DMF-H2O binary solvent mixture ([OH-] = 0.04 M). Combining the structure changes of the porphyrin and the "four orbital" model of Gouterman, many features of the optical spectra of this deprotonated para-hydroxy-substituted tetraphenylporphyrin in different composition of binary solvent mixtures can be rationalized. In highly aqueous solvents, the changes of the titration curves are shown to be mainly due to hydrogen-bonding of the oxygen of the phenoxide anion group by the hydroxylic solvent, Which decreases the energy of the phenoxide anion pi orbital. Thus the phenoxide anion pi orbital cannot cross over the porphyrin Tr orbital being a different HOMO. However, its energy is close to that of the porphyrin pi orbitals. As a result, in the visible region, no charge-transfer band is observed, while in the visible-near region, the Soret peak split into two components. In nonaqueous solvents, the changes are mainly attributed to further deprotonation of pyrrolic-Hs of (OH) 1PH2 by NaOH and coordination with two sodium ions to form the sodium complex of (OH) 1PH2, which turns hyperporphyrin spectra of deprotonated of phenolic-H of (OH)(1)PH2 into three-banded spectra of regular metalloporphyrin.
Resumo:
The synthesis and photophysical studies of several multifunctional phosphorescent iridium(III) cyclometalated complexes consisting of the hole-transporting carbazole and fluorene-based 2-phenylpyridine moieties are reported. All of them are isolated as thermally and morphological stable amorphous solids. Extension of the pi-conjugation through incorporation of electron- pushing carbazole units to the fluorene fragment leads to bathochromic shifts in the emission profile, increases the highest oc- cupied molecular orbital levels and improves the charge balance in the resulting complexes because of the propensity of the carbazole unit to facilitate hole transport. These iridium-based triplet emitters give a strong orange phosphorescence light at room temperature with relatively short lifetimes in the solution phase. The photo- and electroluminescence properties of these phosphorescent carbazolylfluorene-functionalized metalated complexes have been studied in terms of the coordinating position of carbazole to the fluorene unit. Organic light-emitting diodes (OLEDs) using these complexes as the solution-processed emissive layers have been fabricated which show very high efficiencies even without the need for the typical hole-transporting layer.I These orange-emitting devices can produce a maximum current efficiency of similar to 30 cd A(-1) corresponding to an external quantum efficiency of similar to 10 % ph/el (photons per electron) and a power efficiency of similar to 14 Im W-1.
Resumo:
Y2O3:Eu3+ nanocrystals were prepared by combustion synthesis. The particle size estimated by X-ray powder diffraction (XRD) was about 10 nm. A blue-shift of the charge-transfer (CT) band in excitation spectra was observed in Y2O3:Eu3+ nanocrystals compared with bulk Y2O3:Eu3+. The electronic structure Of Y2O3 is calculated by density functional method and exchange and correlation have been treated by the generalized gradient approximation (GGA) within the scheme due to Perdew-Burke-Ernzerhof (PBE). The calculated results show that the energy centroid of 5d orbital in nanocrystal has increasing trend compared with that in the bulk material. The bond length and bond covalency are calculated by chemical bond theory. The bond lengths of Y2O3:Eu3+ nanocrystal are shorter than those of the bulk counterpart and the bond covalency of Y2O3:Eu3+ nanocrystal also has an increasing trend. By combining centroid shift and crystal-field splitting, the blue-shift of the CT band is interpreted.
Resumo:
Sequentially spectrophotometric titrations by sodium hydroxide of meso-tetraphenylporphyrin derivatives bearing one, two, three, or four p-hydroxyl groups result in new types of spectra. The strong new bands appear in the visible region with splitting or broadening of the Soret band and its significant loss of oscillator strength. To understand the molecular origin of these phenomena, the Resonance Raman (RR) and Fourier Transform Infrared (FTIR) experiments are carried out. The results demonstrate that the charges of the deprotonated para-hydroxy substituted meso-tetraphenylporphyrins are localized on the substituents, not delocalized into the pi system of the porphyrin macrocycles and that the ground states of the macrocycles remain essentially unperturbed. Both the related behavior of diprotonated tetrakis(p-(dimethylamino)phenyl) porphyrin and protonated Schiff base porphyrins show that the new bands considered as hyperporphyrin spectra are due to pi(phenoxide anion) --> pi*(porphyrin) transitions, where pi is an orbital on the phenoxide anion substitutent and pi* is a LUMO on the porphyrin.
Resumo:
A novel long-lasting phosphor CdSiO3:Mn2+ is reported in this paper. The Mn2+-doped CdSiO3 phosphor emits orange light with CIE chromaticity coordinates x = 0.5814 and y = 0.4139 under 254 nm UV light excitation. In the emission spectrum of 1% Mn2+-doped CdSiO3 phosphor, there is a broad emission band centered at 575 nm which can be attributed to the,pin-forbidden transition of the d-orbital electron associated with the Mn2+ ion. The phosphorescence can be seen by the naked eyes in the dark clearly even after the 254 nm UV irradiation have been removed for about 1 h. The mechanism of the origin of the long-lasting phosphorescence was discussed using the thermoluminescence curves.
Resumo:
Self-assembled monolayers (SAMs) of 4,4'-thiobisbenzenethiol (TBBT) can be formed on Au surface spontaneously. The structural characteristics and adsorption behavior of TBBT SAMs on Au have been investigated by surface enhanced Raman scattering (SERS), electrochemical cyclic voltammetry (CV), ac impedance spectroscopy (EIS), and atomic force microscopy (AFM). It is demonstrated that TBBT adsorbed on Au by losing a H atom, forming one Au-S bond, and the other mercapto group is free at the surface of the monolayer owing to the presence of the nu(S-H) at 2513 cm(-1) and the delta(C-S-H) at 910 cm(-1) in SERS. The enhancement of the vibration of C-S (1064 cm(-1)), the aromatic C-H vibration (3044 cm(-1)), and the absence of the vibration of S-S illustrate TBBT adsorbed on Au forming a monolayer with one benzene ring tilted with respect to the Au surface. The interpretation of the observed frequencies is aided by ab initio molecular orbital (MO) calculations at the HF/6-31G* level of theory. Electrochemical CV and EIS indicate TBBT monolayers can passivate the Au effectively for its low ratio of pinhole defects (theta = 99.6%). AFM studies give details about the surface morphology. The applications of TBBT SAMs have been extensively investigated by exposure of Cu2+ ion to TBBT SAMs on Au and covalent adsorption of metal nanoparticles.
Resumo:
Bond distances, vibrational frequencies, electron affinities, ionization potentials, dissociation energies, and dipole moments of the title molecules in neutral, positively, and negatively charged ions were studied using the density functional method. Ground state was assigned for each species. The bonding patterns were analyzed and compared with both the available data and across the series. It was found that besides an ionic component, covalent bonds are formed between the metal s, d orbitals and the silicon 3p orbital. The covalent character increases from ScSi (YSi) to NiSi (PdSi) for 3d (4d) metal monosilicides, then decreases. For 5d metal monosilicides, the covalent character increases from LaSi to OsSi, then decreases. For the dissociation of cations, the dissociation channel depends on the magnitude of the ionization potential between metal and silicon. If the ionization potential of the metal is smaller than that of silicon, channel MSi+-> M++Si is favored. Otherwise, MSi+-> M+Si+ will be favored. A similar behavior was observed for anions, in which the dissociation channel depends on the magnitude of electron affinity.
Resumo:
Two series of highly soluble novel nitrogen- and sulfur-containing conjugated polymers were synthesized via an acid-induced self-polycondensation of functional monomers with methyl sulfinyl and aromatic groups. The well-defined structures of synthesized polymers were confirmed by their NMR and IR spectra. The highest occupied molecular orbital energy values for these materials, estimated by cyclic voltammetry, showed a broad range of values from about 5.0 to 5.2 eV used as hole-transport layers (HTL) in two-layer light-emitting diodes ITO/HTL/Alq(3)/Mg:Ag [ITO = indium tin oxide, and Alq(3) = tris(8-quinolinato) aluminum]. The typical turn-on voltage of these diodes was about 4-5 V. The maximum brightness of the device was about 3440 cd/m(2) at 20 V. The maximum efficiency was estimated to be 0.15 1m/W at 10 V.
Resumo:
Procedures that allow the realization of resonance electron capture (REC) mode on a commercial triple-quadrupole mass spectrometer, after some simple modifications, are described, REC mass spectrometry (MS) and tandem mass spectrometry (MS/MS) experiments were performed and spectra for some compounds were recorded. In particular, the charge-remote fragmentation (CRF) spectra of [M - H](-) ions of docosanoic and docosenoic acids under low-energy collisionally activated dissociation (CAD) conditions were obtained, and showed that there were no significant differences for [M - H](-) ions produced at different resonances (i,e. for [M - H](-) ions with different structures). This observation was explained on the basis of results obtained from deuterium-labeled fatty acids, which showed that different CRF ions (but with the same m/z value in the absence of labels) could be produced by different mechanisms, and all of them were obviously realized under CAD conditions that made spectra practically indistinguishable. The other example, which compared the REC-MS/MS spectrum of [M - H](-) ions and EI-MS/MS spectrum of M+. ions of daidzein, demonstrated the potential of the REC-MS/MS technique for more complex structure elucidation. Copyright (C) 2000 John Wiley & Sons, Ltd.
Resumo:
The molecular structural parameters of indophenol and its derivatives were calculated by semi-empirical molecular orbital quantum chemical method,The relation between molecular structural parameters and formal potentials was analyzed by principal factor analysis and multiple Linear regression method. It was found that the formal potential of indophenols has a good relation with two-center electron exchange energy, E-ex (2), resonance energy of O-C bond, E-ex (C-1-O), and molecular ionization potential, I-p, among 19 moleclular structural parameters. The regression equation is E-0' = 1. 47 x 10 (-3) E-ex (two) - 5. 74 x 10 (-2) E-ex (C-1 - O) - 1. 41 x 10 (-2) I-p with RC = 0. 9999 and SD = 0. 00424. It was confirmed by the relation between structure parameters and formal potentials, and the thermodynamic stability of its intermediate products that the H (+) ionization is prior to the electron transfer step in the oxidation mechanism.
Resumo:
Male Wistar rats were administrated orally with La(NO3)(3) at doses of 0. 05, 0. 2, 2. 0, 10 and 20 mg/kg body weight. Urine was collected over a 24 h period after dosing. Resonances for a large number of low molecular weight metabolites were assigned in a high resolution H-1 NMR spectra of rat urine. The variation of some low molecular weight metabolites in urine provided a sensitive measurement of Rare Earth induced renal and liver lesions, in which DMA, DMG, urea, Kg, TMAO, succinate, citrate and amino acids have been suggested as NMR markers for renal damage and ethanol, lactate, taurine as the markers for liver damage. The method could be applicable to study of the toxicological effects of other compounds and drugs.
Resumo:
The gas-phase ion-molecule reactions of C-60 with the methoxymethyl ion [CH3O=CH2](+) and the 1-hydroxyethyl ion [CH3CH=OH](+) generated under the self-chemical-ionization (self-CI) conditions of alkyl methyl ethers and primary alcohols were studied in the ion source of a mass spectrometer. The adduct ions [C60C2H5O](+) and protonated molecules [C60H](+) were observed as the major products of C-60 with the plasma of alkyl methyl ethers. On the contrary, the reactions of C-60 With the plasmas of primary alcohols produced few corresponding adduct ions. The AM1 semiempirical molecular orbital calculations were carried out on 14 possible structures. The calculated results showed that the most stable structure among the possible isomers of [C60C2H5O](+) is the [3+2] cycloadduct. According to experimental and theoretical results, the pathway for the formation of the adduct was presented.
Resumo:
Photoelectrochemical reduction of nitrite and nitrate was studied on the surface of an electrochemically roughened silver electrode. The dependence of the photocurrent on photon energy, applied potential, and concentration of nitrite was determined. It was concluded that the photoelectrochemical reduction proceeds via a photoemission process followed by the capture of hydrated electrons by electron accepters. The excitation of plasmon resonances in nanosize metal structures produced during the roughening procedure resulted in the enhancement of the photoemission process. Ammonia was detected as one of the final products in this reaction. Mechanisms for the photoelectrochemical reduction of nitrite and nitrate are proposed.
Resumo:
Semi-empirical molecular orbital calculations using PM3 Hamiltonian were employed to determine qualitative assignments of the vibrational spectrum of zinc phthalocyanine (ZnPc). The assignments are from the potential energy distribution calculations in the normal coordinate analysis and optimized geometry in the PM3 calculations. The structure of the ZnPc molecule is also deduced. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
The structure of phenylalanine transfer ribonucleic acid (tRNA(Phe)) in solution was explored by H-1 NMR spectroscopy to evaluate the effect of lanthanide ion on the structural and conformational change. It was found that La3+ ions possess specific effects on the imino proton region of the H-1 NMR spectra for yeast tRNA(Phe). The dependence of the imino proton spectra of yeast tRNA(Phe) as a function of La3+ concentration was examined, and the results suggest that the tertiary base pair G(15). C-48, which is located in the terminal in the augmented dihydrouridine helix (D-helix), was markedly affected by La3+ (shifted to downfield by as much as 0.35). Base pair U-8. A(14) in yeast tRNA(Phe), which are stacked on G(15). C-48, was also affected by added La3+ when 1 similar to 2 Mg2+ were also present. Another imino proton that may be affected by La3+ in yeast tRNA(Phe) is that of the tertiary base pair G(19). C-56. The assignment of this resonance in yeast tRNA(Phe) is tentative since it is located in the region of highly overlapping resonances beween 12.6 and 12.2. This base pair helps to anchor the D-loop to the T Psi C loop. The binding of La3+ caused conformational change of tRNA, which is responsible for shifts to upfield or downfield in H-1 NMR spectra.