968 resultados para Residue lignocellulosic
Resumo:
Protease-activated receptors [PARs] are a family of G-protein-coupled seven-transmembrane domain receptors that are activated by proteolytic cleavage of their amino-terminal exodomain. To characterize the cleavage rate of human PAR-1 / 2 / 3 and 4 by trypsin and thrombin, four synthetic quenched-fluorescent peptide substrates have been synthesized. Each substrate consisted of a ten-residue peptide spanning the receptor activation cleavage site and using progress-curve kinetics, k(cat)/K-m values were determined.
Resumo:
Thermogravimetry (TG) can be used for assessing the compositional differences in grasses that relate to dry matter digestibility (DMD) determined by pepsin-cellulase assay. This investigation developed regression models for predicting DMD of herbage grass during one growing season using TG results. The calibration samples were obtained from a field trial of eight cultivars and two breeding lines. The harvested materials from five cuts were analysed by TG to identify differences in the combustion patterns within the range of 30-600 degrees C. The discrete results including weight loss, peak height, area, temperature, widths and residue of three decomposition peaks were regressed against the measured DMD values of the calibration samples. Similarly, continuous weight loss results of the same samples were also utilised to generate DMD models. The r(2) for validation of the discrete and the best continuous models were 0.90 and 0.95, respectively, and the two calibrations were validated using independent samples from 24 plots from a trial carried out in 2004. The standard error for prediction of the 24 samples by the discrete model (4.14%) was higher than that by the continuous model (2.98%). This study has shown that DMD of grass could be predicted from the TG results. The benefit of thermal analysis is the ability to detect and show changes in composition of cell wall fractions of grasses during different cuts in a year.
Resumo:
Active transport of substrates across cytoplasmic membranes is of great physiological, medical and pharmaceutical importance. The glycerol-3-phosphate (G3P) transporter (GlpT) of the E. coli inner membrane is a secondary active antiporter from the ubiquitous major facilitator superfamily that couples the import of G3P to the efflux of inorganic phosphate (Pi) down its concentration gradient. Integrating information from a novel combination of structural, molecular dynamics simulations and biochemical studies, we identify the residues involved directly in binding of substrate to the inward-facing conformation of GlpT, thus defining the structural basis for the substrate-specificity of this transporter. The substrate binding mechanism involves protonation of a histidine residue at the binding site. Furthermore, our data suggest that the formation and breaking of inter- and intradomain salt bridges control the conformational change of the transporter that accompanies substrate translocation across the membrane. The mechanism we propose may be a paradigm for organophosphate:phosphate antiporters.
Resumo:
Sertraline and fluoxetine are selective serotonin re-uptake inhibitors (SSRIs) that are widely prescribed to treat depression. They exert their effects by inhibiting the presynaptic plasma membrane serotonin transporter (SERT). All SSRIs possess halogen atoms at specific positions, which are key determinants for the drugs' specificity for SERT. For the SERT protein, however, the structural basis of its specificity for SSRIs is poorly understood. Here we report the crystal structures of LeuT, a bacterial SERT homolog, in complex with sertraline, R-fluoxetine or S-fluoxetine. The SSRI halogens all bind to exactly the same pocket within LeuT. Mutation at this halogen-binding pocket (HBP) in SERT markedly reduces the transporter's affinity for SSRIs but not for tricyclic antidepressants. Conversely, when the only nonconserved HBP residue in both norepinephrine and dopamine transporters is mutated into that found in SERT, their affinities for all the three SSRIs increase uniformly. Thus, the specificity of SERT for SSRIs is dependent largely on interaction of the drug halogens with the protein's HBP.
Resumo:
Bradykinin-related peptides (BRPs) represent one of the most widespread and closely studied families of amphibian defensive skin secretion peptides. Apart from canonical bradykinin (RPPGFSPFR) that was first reported in skin extracts of the European brown frog, Rana temporaria, many additional site-substituted, N- and/or C-terminally extended peptides have been isolated from skin extracts and secretions from representative species of the families Ranidae, Hylidae, Bombinatoridae and Leiopelmatidae. The most diverse range of BRPs has been found in ranid frog skin secretions and this probably reflects the diversity and number of species studied and their associated life histories within this taxon. Amolops (torrent or cascade frogs) is a genus within the Ranidae that has been poorly studied. Here we report the presence of two novel BRPs in the skin secretions of the Chinese Wuyi Mountain torrent frog (Amolops wuyiensis). Amolopkinins W1 and W2 are dodecapeptides differing in only one amino acid residue at position 2 (Val/Ala) that are essentially (Leu1, Thr6)-bradykinins extended at the N-terminus by either RVAL (W1) or RAAL (W2). Amolopkinins W1 and W2 are structurally similar to amolopkinin L1 from Amolops loloensis and the major BRP (Leu1, Thr6, Trp8)-bradykinin from the skin of the Japanese frog, Rana sakuraii. A. wuyiensis amolopkinins were separately encoded as single copies within discrete precursors of 61 amino acid residues as deduced from cloned skin cDNA. Synthetic replicates of both peptides were found to potently antagonize the contractile effects of canonical bradykinin on isolated rat ileum smooth muscle preparations. Amolopkinins thus appear to represent a novel sub-family of ranid frog skin secretion BRPs.
Resumo:
Amphibian defensive skin secretions are known to contain a plethora of biologically-active peptides that are often structural and functional analogues of vertebrate neuropeptides. Here we report the structures of two invertebrate neuropeptide analogues, IPPQFMRF amide (IF-8 amide) and EGDEDEFLRF amide (EF-10 amide), from the defensive skin secretions of two different species of African hyperoliid frogs, Kassina maculata and Phylictimantis verrucosus, respectively. These represent the first canonical FMRF amide-related peptides (FaRPs) from a vertebrate source. The cDNA encoding IF-8 amide was cloned from a skin secretion library and found to contain a single copy of the peptide located at the C-terminus of a 58 amino acid residue open-reading frame. These data extend the potential targets of the defensive arsenal of amphibian tegumental secretions to parasitic/predatory invertebrates and the novel peptides described may represent the first vertebrate peptidic endectocides.
Resumo:
Here we describe the structural and functional characterization of a novel myotropic peptide, sauvatide, from the skin secretion of the waxy monkey frog, Phyllomedusa sauvagei. Sauvatide is a C-terminally amidated decapeptide with the following primary structure – LRPAILVRTKamide – monoisotopic mass 1164.77 Da, which was found to contract the smooth muscle of rat urinary bladder with an EC50 of 2.2 nM. The sauvatide precursor, deduced from cloned skin cDNA, consists of 62 amino acid residues with a single copy of sauvatide located near the C-terminus. The mature peptide is generated from the precursor by cleavage at a classical –KR-cleavage site located proximal to the N-terminus and by removal of a –GKGK sequence at the C-terminus, the first glycyl residue acting as amide donor. Amphibian skin secretions thus continue to be a source of novel and potent biologically active peptides acting through functional targets in mammalian tissues.
Resumo:
Mitochondrial complex I (NADH: ubiquinone oxidoreductase) undergoes reversible deactivation upon incubation at 30-37 degrees C. The active/deactive transition could play an important role in the regulation of complex I activity. It has been suggested recently that complex I may become modified by S-nitrosation under pathological conditions during hypoxia or when the nitric oxide: oxygen ratio increases. Apparently, a specific cysteine becomes accessible to chemical modification only in the deactive form of the enzyme. By selective fluorescence labeling and proteomic analysis, we have identified this residue as cysteine-39 of the mitochondrially encoded ND3 subunit of bovine heart mitochondria. Cysteine-39 is located in a loop connecting the first and second transmembrane helix of this highly hydrophobic subunit. We propose that this loop connects the ND3 subunit of the membrane arm with the PSST subunit of the peripheral arm of complex I, placing it in a region that is known to be critical for the catalytic mechanism of complex I. In fact, mutations in three positions of the loop were previously reported to cause Leigh syndrome with and without dystonia or progressive mitochondrial disease.
Resumo:
Proton pumping respiratory complex I (NADH: ubiquinone oxidoreductase) is a major component of the oxidative phosphorylation system in mitochondria and many bacteria. In mammalian cells it provides 40% of the proton motive force needed to make ATP. Defects in this giant and most complicated membrane-bound enzyme cause numerous human disorders. Yet the mechanism of complex I is still elusive. A group exhibiting redox-linked protonation that is associated with iron-sulfur cluster N2 of complex I has been proposed to act as a central component of the proton pumping machinery. Here we show that a histidine in the 49-kDa subunit that resides near iron-sulfur cluster N2 confers this redox-Bohr effect. Mutating this residue to methionine in complex I from Yarrowia lipolytica resulted in a marked shift of the redox midpoint potential of iron-sulfur cluster N2 to the negative and abolished the redox-Bohr effect. However, the mutation did not significantly affect the catalytic activity of complex I and protons were pumped with an unchanged stoichiometry of 4 H+/2e(-). This finding has significant implications on the discussion about possible proton pumping mechanism for complex I.
Resumo:
Since 1994, Irish cattle have been exposed to greater risks of acquiring Mycobacterium avium subspecies paratuberculosis (MAP) infection as a consequence of the importation of over 70,000 animals from continental Europe. In recent years, there has been an increase in the number of reported clinical cases of paratuberculosis in Ireland. This study examines the prevalence of factors that promote the introduction and within-herd transmission of Mycobacterium avium subspecies paratuberculosis (MAP) on selected Irish dairy farms in the Cork region, and the association between these factors and the results of MAP screening tests on milk sock filter residue (MFR). A total of 59 dairy farms, selected using non-random methods but apparently free of endemic paratuberculosis, were enrolled into the study. A questionnaire was used to collect data about risk factors for MAP introduction and transmission. The MFR was assessed on six occasions over 24 months for the presence of MAP, using culture and immunomagnetic separation prior to polymerase chain reaction (IMS-PCR). Furthermore, blood samples from all entire male and female animals over one year of age in 20 herds were tested by ELISA. Eighteen (31%) farms had operated as closed herds since 1994, 28 (47%) had purchased from multiple sources and 14 (24%) had either direct or indirect (progeny) contact with imported animals. Milk and colostrum were mixed on 51% of farms, while 88% of farms fed pooled milk. Thirty (51%) herds tested negative to MFR culture and IMS-PCR, 12 (20%) were MFR culture positive, 26 (44%) were IMS-PCR positive and seven (12%) were both culture and IMS-PCR positive. The probability of a positive MFR culture was significantly associated with reduced attendance at calving, and with increased use of individual calf pens and increased (but not significantly) if multiple suckling was practised. There was poor agreement between MFR culture and MFR IMS-PCR results, but moderate agreement between MFR culture and ELISA test results. This study highlights a lack of awareness among Irish dairy farmers about the effect of inadequate biosecurity on MAP introduction. Furthermore, within-herd transmission will be facilitated by traditional calf rearing and waste management practices. The findings of viable MAP in the presence of known transmission factors in non-clinically affected herds could be a prelude to long-term problems for the Irish cattle and agri-business generally.
Resumo:
Skin kininogens from bombinid toads encode an array of bradykinin-related peptides and one such kininogen from Bombina maxima also encodes the potent bradykinin B2-receptor antagonist, kinestatin. In order to determine if the skin secretion of the closely-related toad, Bombina orientalis, contained a bradykinin inhibitory peptide related to kinestatin, we screened reverse phase HPLC fractions of defensive skin secretion using a rat tail artery smooth muscle preparation. A fraction was located that inhibited bradykinin-induced relaxation of the preparation and this contained a peptide of 3198.5 Da as determined by MALDI-TOF MS. Automated Edman degradation of this peptide established the identity of a 28-mer as: DMYEIKGFKSAHGRPRVCPPGEQCPIWV, with a disulfide-bridge between Cys18 and Cys24 and an amidated C-terminal Val residue. Peptide DV-28 was found to correspond to residues 133–160 of skin pre-kininogen-2 of B. orientalis that also encodes two copies of (Thr6)-bradykinin. The C-terminal residue, Gly-161, of the precursor open-reading frame, acts as the C-terminal amide donor of mature DV-28. DV-28 amide thus represents a new class of bradykinin inhibitor peptide from amphibian skin secretion.
Resumo:
Amphibian skin secretions have proven to be rich sources of antimicrobial peptides that are proposed to be fundamental components of the innate immune system. As amphibian skin is a multi-functional organ playing, among other things, a crucial role in respiration, it has been deemed that a core biological role for such peptides is control of microbial flora on this surface. To date, however, antimicrobial efficacy has been universally determined by means of establishing minimum inhibitory concentrations (MICs) using planktonic organisms rather than those within a biofilm such as would occur on this exposed surface. Here we describe the identification and structural characterisation of a novel 19 amino acid residue antimicrobial peptide of the phylloseptin family, named PSN-1, from the skin secretion of the waxy monkey frog, Phyllomedusa sauvagei. PSN-1 displayed broad-spectrum activity against a range of planktonic organisms with a high potency (MIC 5 µM) against Staphylococcus aureus. In a specific bioassay with the same organism grown as a biofilm, the minimal biofilm eradication concentration (MBEC) was found to be of the same high potency (5 µM). The present data would suggest that evaluation of actions and potency of amphibian skin secretion antimicrobial peptides might best be achieved by evaluating MBEC rather than MIC using planktonic organisms and that data arising from such studies may have more biological relevance in reflecting the purpose for which they have evolved through natural selection.
Resumo:
Here we report the primary structure of a novel peptide, named helokinestatin-5 (VPPPLQMPLIPR), from the venom of the Gila monster (Heloderma suspectum). Helokinestatin-5 differs in structure from helokinestatin-3 by deletion of a single prolyl residue in the N-terminally located polyproline region. Two different biosynthetic precursors were consistently cloned from a venom-derived cDNA library. The first encoded helokinestatins 1–4 and a single copy of C-type natriuretic peptide, as previously described, whereas the second was virtually identical, lacking only a single prolyl codon as found in the mature attenuated helokinestatin-5 peptide. Helokinestatins 1–3 and 5 were synthesized by solid-phase fmoc chemistry and each synthetic replicate was found to antagonize the relaxation effect induced by bradykinin on rat tail artery smooth muscle. Helokinestatins thus represent a novel family of vasoactive peptides from the venom of helodermatid lizards
Resumo:
Kinestatin, isolated from the skin of the Chinese toad, Bombina maxima, was the first bradykinin B2 receptor antagonist identified in amphibians. Molecular cloning established that it is co-encoded with the bradykinin-related peptide, maximakinin, within one of several skin kininogens. To examine other species within the genus Bombina for the presence of structural homologues of kinestatin, we subjected skin secretion of the toad, Bombina orientalis, to HPLC fractionation with subsequent bioassay of fractions for antagonism of bradykinin activity using an isolated rat tail artery smooth muscle preparation. A single fraction was located that inhibited bradykinin-induced relaxation of rat arterial smooth muscle and MALDI-TOF analysis of this fraction revealed that it contained a single peptide of molecular mass 3198.5 Da. Further primary structural analysis of this peptide showed that it was a 28-mer with an N-terminal Asp (D) residue and a C-terminal Val (V) residue that was amidated. The peptide was named DV-28 amide in accordance with these primary structural attributes. Synthetic DV-28 amide replicated the observed bradykinin antagonistic effect within the smooth muscle bioassay in a dose-dependent manner. In addition, it was observed to inhibit the proliferation of human microvessel endothelial cells (HMECs) as assessed by MTT assay. Bioinformatic analysis revealed that DV-28 amide was, like kinestatin, co-encoded with a bradykinin receptor agonist on one of two skin kininogens identified in B. orientalis. DV-28 amide thus represents a novel class of bradykinin antagonist from skin secretions of bombinid toads that appear to be a rich source of such novel peptides.
Resumo:
The tachykinins hylambatin and (Thr)11-hylambatin have been isolated from the defensive skin secretion of the African hyperoliid frog, Kassina maculata,. Hylambatin (DPPDPNRFYGMMamide) is revised in structure from the original sequence by a single site substitution (Asn/Asp at position 6), and (Thr)11-hylambatin, a novel tachykinin, differs in structure from hylambatin by a single Thr/Met substitution. (Thr)11-hylambatin is five- to ten-fold more abundant than hylambatin in secretions. Synthetic replicates of both peptides were active in smooth muscle preparations including the rat tail artery, rat ileum and bovine trachea. While hylambatin displayed activity consistent with an NK1-receptor ligand, (Thr)11-hylambatin was more active than either substance P or neurokinin A in both NK1- and NK-2 receptor rich preparations. Incorporation of a threoninyl residue rather than the canonical leucyl residue at the penultimate position in both substance P and neurokinin A, generated active ligands in both arterial and intestinal smooth muscle preparations. Hylambatin precursor cDNAs, designated HYBN-1 and HYBN-2, respectively, were cloned from a skin library by 3'- and 5'-RACE reactions. Both were highly-homologous containing open-reading frames of 66 amino acids encoding single copies of either hylambatin or (Thr)11-hylambatin. These data reveal a hitherto unrecognized structure/activity attribute of mammalian tachykinin receptors revealed though discovery of a novel amphibian skin-derived, site-substituted peptide ligand.