942 resultados para Reduced activation ferritic-martensitic steel
Resumo:
In this article we provide homotopy solutions of a cancer nonlinear model describing the dynamics of tumor cells in interaction with healthy and effector immune cells. We apply a semi-analytic technique for solving strongly nonlinear systems – the Step Homotopy Analysis Method (SHAM). This algorithm, based on a modification of the standard homotopy analysis method (HAM), allows to obtain a one-parameter family of explicit series solutions. By using the homotopy solutions, we first investigate the dynamical effect of the activation of the effector immune cells in the deterministic dynamics, showing that an increased activation makes the system to enter into chaotic dynamics via a period-doubling bifurcation scenario. Then, by adding demographic stochasticity into the homotopy solutions, we show, as a difference from the deterministic dynamics, that an increased activation of the immune cells facilitates cancer clearance involving tumor cells extinction and healthy cells persistence. Our results highlight the importance of therapies activating the effector immune cells at early stages of cancer progression.
Resumo:
The optimal design of cold-formed steel columns is addressed in this paper, with two objectives: maximize the local-global buckling strength and maximize the distortional buckling strength. The design variables of the problem are the angles of orientation of cross-section wall elements the thickness and width of the steel sheet that forms the cross-section are fixed. The elastic local, distortional and global buckling loads are determined using Finite Strip Method (CUFSM) and the strength of cold-formed steel columns (with given length) is calculated using the Direct Strength Method (DSM). The bi-objective optimization problem is solved using the Direct MultiSearch (DMS) method, which does not use any derivatives of the objective functions. Trade-off Pareto optimal fronts are obtained separately for symmetric and anti-symmetric cross-section shapes. The results are analyzed and further discussed, and some interesting conclusions about the individual strengths (local-global and distortional) are found.
Resumo:
Three-dimensional (3D) nickel-copper (Ni-Cu) nanostructured foams were prepared by galvanostatic electrodeposition, on stainless steel substrates, using the dynamic hydrogen bubble template. These foams were tested as electrodes for the hydrogen evolution reaction (HER) in 8 M KOH solutions. Polarisation curves were obtained for the Ni-Cu foams and for a solid Ni electrode, in the 25-85 degrees C temperature range, and the main kinetic parameters were determined. It was observed that the 3D foams have higher catalytic activity than pure Ni. HER activation energies for the Ni-Cu foams were lower (34-36 kJ mol(-1)) than those calculated for the Ni electrode (62 kJ mol(-1)). The foams also presented high stability for HER, which makes them potentially attractive cathode materials for application in industrial alkaline electrolysers.
Resumo:
Reduction of complement activation through an alteration of the Fc fragment of immunoglobulins by b-propiolactone treatment was carried out in equine antisera raised against rabies virus, Bothrops venoms and diphtherial toxin. Results were evaluated by means of an anaphylactic test performed on guinea-pigs, and compared to the ones obtained with the same sera purified by saline precipitation (ammonium sulfate), followed or not by enzymatic digestion with pepsin. Protein purity levels for antibothropic serum were 184.5 mg/g and 488.5 mg/g in b-propiolactone treated and pepsin-digested sera, respectively. The recovery of specific activity was 100% and 62.5% when using antibothropic serum treated by b-propiolactone and pepsin digestion, respectively. The antidiphtherial and anti-rabies sera treated with b-propiolactone and pepsin presented protein purity levels of 5,698 and 7,179 Lf/g, 16,233 and 6,784 IU/g, respectively. The recovery of specific activity for these antisera were 88.8%, 77.7%, 100% and 36,5%, respectively. b-propiolactone treatment induced a reduction in complement activation, tested "in vivo", without significant loss of biological activity. This treatment can be used in the preparation of heterologous immunoglobulins for human use.
Resumo:
Dissertação apresentada para a obtenção do Grau de Mestre em Genética Molecular e Biomedicina, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
Ammonia is an important gas in many power plants and industrial processes so its detection is of extreme importance in environmental monitoring and process control due to its high toxicity. Ammonia’s threshold limit is 25 ppm and the exposure time limit is 8 h, however exposure to 35 ppm is only secure for 10 min. In this work a brief introduction to ammonia aspects are presented, like its physical and chemical properties, the dangers in its manipulation, its ways of production and its sources. The application areas in which ammonia gas detection is important and needed are also referred: environmental gas analysis (e.g. intense farming), automotive-, chemical- and medical industries. In order to monitor ammonia gas in these different areas there are some requirements that must be attended. These requirements determine the choice of sensor and, therefore, several types of sensors with different characteristics were developed, like metal oxides, surface acoustic wave-, catalytic-, and optical sensors, indirect gas analyzers, and conducting polymers. All the sensors types are described, but more attention will be given to polyaniline (PANI), particularly to its characteristics, syntheses, chemical doping processes, deposition methods, transduction modes, and its adhesion to inorganic materials. Besides this, short descriptions of PANI nanostructures, the use of electrospinning in the formation of nanofibers/microfibers, and graphene and its characteristics are included. The created sensor is an instrument that tries to achieve a goal of the medical community in the control of the breath’s ammonia levels being an easy and non-invasive method for diagnostic of kidney malfunction and/or gastric ulcers. For that the device should be capable to detect different levels of ammonia gas concentrations. So, in the present work an ammonia gas sensor was developed using a conductive polymer composite which was immobilized on a carbon transducer surface. The experiments were targeted to ammonia measurements at ppb level. Ammonia gas measurements were carried out in the concentration range from 1 ppb to 500 ppb. A commercial substrate was used; screen-printed carbon electrodes. After adequate surface pre-treatment of the substrate, its electrodes were covered by a nanofibrous polymeric composite. The conducting polyaniline doped with sulfuric acid (H2SO4) was blended with reduced graphene oxide (RGO) obtained by wet chemical synthesis. This composite formed the basis for the formation of nanofibers by electrospinning. Nanofibers will increase the sensitivity of the sensing material. The electrospun PANI-RGO fibers were placed on the substrate and then dried at ambient temperature. Amperometric measurements were performed at different ammonia gas concentrations (1 to 500 ppb). The I-V characteristics were registered and some interfering gases were studied (NO2, ethanol, and acetone). The gas samples were prepared in a custom setup and were diluted with dry nitrogen gas. Electrospun nanofibers of PANI-RGO composite demonstrated an enhancement in NH3 gas detection when comparing with only electrospun PANI nanofibers. Was visible higher range of resistance at concentrations from 1 to 500 ppb. It was also observed that the sensor had stable, reproducible and recoverable properties. Moreover, it had better response and recovery times. The new sensing material of the developed sensor demonstrated to be a good candidate for ammonia gas determination.
Resumo:
Dissertação para obtenção do Grau de Mestre em Genética Molecular e Biomedicina
Resumo:
Sulfadiazine is an antibiotic of the sulfonamide group and is used as a veterinary drug in fish farming. Monitoring it in the tanks is fundamental to control the applied doses and avoid environmental dissemination. Pursuing this goal, we included a novel potentiometric design in a flow-injection assembly. The electrode body was a stainless steel needle veterinary syringe of 0.8-mm inner diameter. A selective membrane of PVC acted as a sensory surface. Its composition, the length of the electrode, and other flow variables were optimized. The best performance was obtained for sensors of 1.5-cm length and a membrane composition of 33% PVC, 66% onitrophenyloctyl ether, 1% ion exchanger, and a small amount of a cationic additive. It exhibited Nernstian slopes of 61.0 mV decade-1 down to 1.0×10-5 mol L-1, with a limit of detection of 3.1×10-6 mol L-1 in flowing media. All necessary pH/ionic strength adjustments were performed online by merging the sample plug with a buffer carrier of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, pH 4.9. The sensor exhibited the advantages of a fast response time (less than 15 s), long operational lifetime (60 days), and good selectivity for chloride, nitrite, acetate, tartrate, citrate, and ascorbate. The flow setup was successfully applied to the analysis of aquaculture waters. The analytical results were validated against those obtained with liquid chromatography–tandem mass spectrometry procedures. The sampling rate was about 84 samples per hour and recoveries ranged from 95.9 to 106.9%.
Resumo:
Este trabalho foi realizado na Scania CV AB e teve como principal objectivo estabelecer uma diretriz sobre a possível utilização de aços vazados. Existe uma grande necessidade na realização deste trabalho, de forma a apoiar os engenheiros de projecto no seu processo de selecção dos materiais mais adequados, para produzir componentes mais leves e de elevado desempenho. Esta diretriz apresenta informação relacionada com propriedades mecânicas, processos de fundição, vazabilidade, tipologia de defeitos, tratamentos térmicos, soldabilidade e tratamentos superficiais dos aços vazados. Este trabalho foi limitado, na seleção de materiais para componentes do camião, a aços vazados que poderiam ser aplicados em dois componentes específicos: um componente estrutural da carroçaria sujeito a esforços de fadiga e a um colector de gases de combustão, sujeito a fluência, oxidação, fadiga por corrosão, fadiga-térmica e fadiga-mecânica. Foi realizado um benchmark focado nestes dois componentes de forma a saber que materiais são utilizados de momento por outras empresas concorrentes. Foi realizada ainda uma análise sobre possíveis materiais que possam ser aplicados em cada componente referido. Foi conduzida uma caracterização no estado bruto de fundição de um aço inoxidável vazado usado para produzir um protótipo do colector de gases. Esta caracterização consistiu numa análise microestrutural e medição de macro e microdurezas. Além da caracterização inicial, foram aplicados um conjunto de tratamentos térmicos, de forma a estudar a possibilidade de eliminar os carbonetos presentes inicialmente nas fronteiras de grão. As principais conclusões deste trabalho são que o aço vazado apresenta potencial para ser uma escolha válida em diversas aplicações, devido a um leque alargado de propriedades apresentadas tipicamente por este material. Relativamente a aplicações estruturais, o aço vazado é vantajoso comparativamente ao ferro fundido, quando são requeridos, por exemplo, soldabilidade e elevada resistência, combinada com elevada tenacidade à fractura. Para componentes sujeitos a elevadas temperaturas de serviço, o aço inoxidável vazado é vantajoso quando usado a temperaturas superiores a 750°C, apesar do seu elevado custo. O tratamento térmico composto por um recozimento de solubilização seguido de envelhecimento, elimina quase na totalidade os carbonetos presentes nas fronteiras de grão e verifica-se um aumento de dureza através de uma precipitação de carbonetos finamente dispersos na matriz, que poderão também aumentar a resistência à fluência.
Resumo:
Since there are no studies evaluating the participation of the complement system (CS) in Jorge Lobo's disease and its activity on the fungus Lacazia loboi, we carried out the present investigation. Fungal cells with a viability index of 48% were obtained from the footpads of BALB/c mice and incubated with a pool of inactivated serum from patients with the mycosis or with sterile saline for 30 min at 37 ºC. Next, the tubes were incubated for 2 h with a pool of noninactivated AB+ serum, inactivated serum, serum diluted in EGTA-MgCl2, and serum diluted in EDTA. The viability of L. loboi was evaluated and the fungal suspension was cytocentrifuged. The slides were submitted to immunofluorescence staining using human anti-C3 antibody. The results revealed that 98% of the fungi activated the CS by the alternative pathway and no significant difference in L. loboi viability was observed after CS activation. In parallel, frozen histological sections from 11 patients were analyzed regarding the presence of C3 and IgG by immunofluorescence staining. C3 and IgG deposits were observed in the fungal wall of 100% and 91% of the lesions evaluated, respectively. The results suggest that the CS and immunoglobulins may contribute to the defense mechanisms of the host against L. loboi.
Resumo:
The activity dependent brain repair mechanism has been widely adopted in many types of neurorehabilitation. The activity leads to target specific and non-specific beneficial effects in different brain regions, such as the releasing of neurotrophic factors, modulation of the cytokines and generation of new neurons in adult hood. However physical exercise program clinically are limited to some of the patients with preserved motor functions; while many patients suffered from paralysis cannot make such efforts. Here the authors proposed the employment of mirror neurons system in promoting brain rehabilitation by "observation based stimulation". Mirror neuron system has been considered as an important basis for action understanding and learning by mimicking others. During the action observation, mirror neuron system mediated the direct activation of the same group of motor neurons that are responsible for the observed action. The effect is clear, direct, specific and evolutionarily conserved. Moreover, recent evidences hinted for the beneficial effects on stroke patients after mirror neuron system activation therapy. Finally some music-relevant therapies were proposed to be related with mirror neuron system.