991 resultados para Rectifying-k Channels
Resumo:
Cardiac L-type Ca (CaV1.2) channels are composed of a pore forming CaV1.2-α1 subunit and auxiliary β- and α2δ-subunits. β-subunits are important not only for surface expression of the channel pore but also for modulation of channel gating properties. Different β-subunits differentially modulate channel activity (Hullin et al., PLOSone, 2007) and thus L-type Ca2+ channel gating is altered when β-subunit expression pattern is changed. In human heart failure increased activity of single ventricular L-type Ca2+-channels is associated with an increased expression of β2-subunits. Interestingly, induction of β2-subunit over-expression in hearts of transgenic mice resembled this heart failure phenotype of hyperactive single L-type Ca2+-channel channels (Beetz et al., Cardiovasc Res. 2009). We hypothesised that competition of less stimulating β-subunits (e.g. β1) with β-subunits causing strong channel stimulation (e.g. β2) might be a means to treat dysfunctional L-type Ca2+-channel activity. To test this hypothesis, we performed whole-cell and single-channel measurements employing recombinant CaV1.2 channels expressed in HEK293 cells together with both β- and β1a2b-subunits. Whole-cell analysis revealed no differences of maximum L-type Ca2+-current densities [pA/pF] with coexpression of either β1a-subunits (-52±3.8), β2b-subunits (-61.5±6.6) or the mixtures of β- and β1a2b-subunits with the plasmid transfection ratio of 2:1 (-60.2±1.6) and 1:1 (-56.7±2.6) respectively. However, steady state inactivation kinetics differed between particular β-subunit and the relative amount of β-subunit presence in the mixtures (β1a1a-subunit (-41.1±1.0), β2b-subunits (-35.1±1.1), mixture 2:1 (-40.3±1.5), and mixture 1:1 (-38.4±2.0); [mV]; p<0.05, students t-test). Using a novel single-channel analysis, switching of gating between β1-like and β2-like modes was monitored on a minute time-scale when both β-subunits were co-expressed in the same cells, but the larger amount of β1a-subunits is required for the effective switching of gating. Our results indicate a model of mutually exclusive binding and effective competition between several β-subunits suggesting that hyperactive channel gating mediated e.g. by β2-subunits can be normalized by β1-subunits. Therefore, competitive replacement between different L-type Ca2+-channel β-subunits might serve as a novel therapeutic strategy for e.g. heart failure.
Resumo:
We study a confined mixture of bosons and fermions in the quantal degeneracy regime with attractive boson-fermion interaction. We discuss the effect that the presence of vortical states and the displacement of the trapping potentials may have on mixtures near collapse, and investigate the phase stability diagram of the K-Rb mixture in the mean-field approximation supposing in one case that the trapping potentials felt by bosons and fermions are shifted from each other, as it happens in the presence of a gravitational sag, and in another case, assuming that the Bose condensate sustains a vortex state. In both cases, we have obtained an analytical expression for the fermion effective potential when the Bose condensate is in the Thomas-Fermi regime, that can be used to determine the maxima of the Fermionic density. We have numerically checked that the values one obtains for the location of these maxima using the analytical formulas remain valid up to the critical boson and fermion numbers, above which the mixture collapses.
Resumo:
We study energy-weighted sum rules of the pion and kaon propagator in nuclear matter at finite temperature. The sum rules are obtained from matching the Dyson form of the meson propagator with its spectral Lehmann representation at low and high energies. We calculate the sum rules for specific models of the kaon and pion self-energy. The in-medium spectral densities of the K and (K) over bar mesons are obtained from a chiral unitary approach in coupled channels that incorporates the S and P waves of the kaon-nucleon interaction. The pion self-energy is determined from the P-wave coupling to particle-hole and Delta-hole excitations, modified by short-range correlations. The sum rules for the lower-energy weights are fulfilled satisfactorily and reflect the contributions from the different quasiparticle and collective modes of the meson spectral function. We discuss the sensitivity of the sum rules to the distribution of spectral strength and their usefulness as quality tests of model calculations.
Resumo:
The epithelial Na+ channel ENaC mediates transepithelial Na+ transport in the distal kidney, the colon, and the lung and is a key element for the maintenance of Na+ balance and the regulation of blood pressure. Mutagenesis studies have identified residues alphaS583 and the homologous betaG525 and gammaG537 in the outer pore entrance that are critical for ENaC block by the K+-sparing diuretic amiloride. The aim of the present study was to determine first, whether these residues are part of the amiloride binding site, and second, whether they are general determinants of ENaC block by amiloride and its derivatives. Kinetic analysis of the association and dissociation rates of amiloride and benzamil to ENaC showed that mutation of residue alphaS583C and the homologous betaG525C increased the dissociation rate of the drugs from the binding site, with little changes in their association rate. Thus, these mutations destabilize the binding interaction between the blockers and the receptor on the channel, favoring the unbinding of the ligand. This strongly suggests that they are part of the binding site. Because mutations of alphaS583, betaG525, and gammaG537 have similar effects on amiloride, benzamil, and triamterene block, we conclude that these three ENaC blockers share a common receptor within the ion channel pore.
Resumo:
Poultry litter is an important nutrient source in agriculture, although little information is available regarding its decomposition rate and nutrient release. To evaluate these processes, poultry litter (PL) was applied to the soil to supply 100, 200 and 300 kg ha-1 N contained in 4,953, 9,907 and 14,860 kg ha-1 PL, respectively. The litter bag technique was used to monitor the process of decomposition and nutrient release from the litter. These bags were left on the soil surface and collected periodically (after 15, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330, and 365 days). The dry matter (DM) loss was highest (35 %) after the first 30 days of field incubation. The highest nutrient release occurred in the first 60 days on the field, when 40, 34, 91, and 39 %, respectively, of N, P, K, and Ca of the initial PL dry matter (4,860 kg ha-1) was already released to the soil. In absolute terms, these percentages represent 40, 23, 134, and 69 kg ha-1 of N, P, K, and Ca and these values doubled and tripled as the PL fertilization rates increased to 9,907 and 14,860 kg ha-1, respectively. After one year of field incubation, the residual contents in the litter were 27, 15, 18 and 30 % of the initial DM , and N, P and Ca, respectively. The release rate of K was the fastest and 91 % of the K had been released from the PL after 30 days of field incubation.
Resumo:
We perform a three-dimensional study of steady state viscous fingers that develop in linear channels. By means of a three-dimensional lattice-Boltzmann scheme that mimics the full macroscopic equations of motion of the fluid momentum and order parameter, we study the effect of the thickness of the channel in two cases. First, for total displacement of the fluids in the channel thickness direction, we find that the steady state finger is effectively two-dimensional and that previous two-dimensional results can be recovered by taking into account the effect of a curved meniscus across the channel thickness as a contribution to surface stresses. Second, when a thin film develops in the channel thickness direction, the finger narrows with increasing channel aspect ratio in agreement with experimental results. The effect of the thin film renders the problem three-dimensional and results deviate from the two-dimensional prediction.
Resumo:
We study the forced displacement of a fluid-fluid interface in a three-dimensional channel formed by two parallel solid plates. Using a lattice-Boltzmann method, we study situations in which a slip velocity arises from diffusion effects near the contact line. The difference between the slip and channel velocities determines whether the interface advances as a meniscus or a thin film of fluid is left adhered to the plates. We find that this effect is controlled by the capillary and Péclet numbers. We estimate the crossover from a meniscus to a thin film and find good agreement with numerical results. The penetration regime is examined in the steady state. We find that the occupation fraction of the advancing finger relative to the channel thickness is controlled by the capillary number and the viscosity contrast between the fluids. For high viscosity contrast, lattice-Boltzmann results agree with previous results. For zero viscosity contrast, we observe remarkably narrow fingers. The shape of the finger is found to be universal.
Resumo:
BACKGROUND AND OBJECTIVE: Theoretically myocardial angiogenesis of laser injury can be further enhanced by the addition of angiogenic growth factors. The influence of the way of administration of these factors on vascular growth around the channels is still unclear. MATERIALS AND METHODS: 18 pigs (mean weight 72 +/- 5.2 kg) were randomized to either triads of transmyocardial laser revascularization (TMLR) channels (group 1, n = 6) or isolated channels (group 2, n = 6), or a control group (n = 6). The animals had injections of bovine bone derived growth factor mixture either in the center of the triads in group 1 or within the channels themselves in group 2. Animals were sacrificed one month later for histological analysis. RESULTS: The vascular densities of myocardial areas within the triads of group 1 and around the channels in group 2 were significantly larger than in the control group: 15.2 +/- 3.7/mm2 and 14.2 +/- 3.5/mm2 respectively vs 5.3 +/- 1.6/mm2 (p < 0.001 for both differences). Differences of densities between group 1 and 2 were not statistically significant (p = 0.6). CONCLUSIONS: In this porcine model, the addition of a bovine bone derived growth factor mixture to TMLR significantly stimulates angiogenesis in the areas adjacent to the channels. The place of injection does not influence the angiogenesis intensity.