938 resultados para Recombinant human BMP-7


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study combined high resolution mass spectrometry (HRMS), advanced chemometrics and pathway enrichment analysis to analyse the blood metabolome of patients attending the memory clinic: cases of mild cognitive impairment (MCI; n = 16), cases of MCI who upon subsequent follow-up developed Alzheimer's disease (MCI_AD; n = 19), and healthy age-matched controls (Ctrl; n = 37). Plasma was extracted in acetonitrile and applied to an Acquity UPLC HILIC (1.7μm x 2.1 x 100 mm) column coupled to a Xevo G2 QTof mass spectrometer using a previously optimised method. Data comprising 6751 spectral features were used to build an OPLS-DA statistical model capable of accurately distinguishing Ctrl, MCI and MCI_AD. The model accurately distinguished (R2 = 99.1%; Q2 = 97%) those MCI patients who later went on to develop AD. S-plots were used to shortlist ions of interest which were responsible for explaining the maximum amount of variation between patient groups. Metabolite database searching and pathway enrichment analysis indicated disturbances in 22 biochemical pathways, and excitingly it discovered two interlinked areas of metabolism (polyamine metabolism and L-Arginine metabolism) were differentially disrupted in this well-defined clinical cohort. The optimised untargeted HRMS methods described herein not only demonstrate that it is possible to distinguish these pathologies in human blood but also that MCI patients 'at risk' from AD could be predicted up to 2 years earlier than conventional clinical diagnosis. Blood-based metabolite profiling of plasma from memory clinic patients is a novel and feasible approach in improving MCI and AD diagnosis and, refining clinical trials through better patient stratification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intake of heterocyclic amines (HCAs, carcinogens produced during cooking of meat/fish, the most abundant being PhIP, DiMeIQx and MeIQx) is influenced by many factors including type/thickness of meat and cooking method/temperature/duration. Thus, assessment of HCA dietary exposure is difficult. Protein adducts of HCAs have been proposed as potential medium-term biomarkers of exposure, e.g. PhIP adducted to serum albumin or haemoglobin. However, evidence is still lacking that HCA adducts are viable biomarkers in humans consuming normal diets. The FoodCAP project, supported by World Cancer Research Fund, developed a highly sensitive mass spectrometric method for hydrolysis, extraction and detection of acid-labile HCAs in blood and assessed their validity as biomarkers of exposure. Multiple acid/alkaline hydrolysis conditions were assessed, followed by liquid-liquid extraction, clean-up by cation-exchange SPE and quantification by UPLC-ESI-MS/ MS. Blood was analysed from volunteers who completed food diaries to estimate HCA intake based on the US National Cancer Institute’s CHARRED database. Standard HCAs were recovered quantitatively from fortified blood. In addition, PhIP/MeIQx adducts bound to albumin and haemoglobin prepared in vitro using a human liver microsome system were also detectable in blood fortified at low ppt concentrations. However, except for one sample (5pg/ml PhIP), acid-labile PhIP, 7,8-DiMeIQx, 4,8-DiMeIQx and MeIQx were not observed above the 2pg/ml limit of detection in plasma (n=35), or in serum, whole blood or purified albumin, even in volunteers with high meat consumption (nominal HCA intake >2µg/day). It is concluded that HCA blood protein adducts are not viable biomarkers of exposure. Untargeted metabolomic analyses may facilitate discovery of suitable markers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is increasing interest in how humans influence spatial patterns in biodiversity. One of the most frequently noted and marked of these patterns is the increase in species richness with area, the species-area relationship (SAR). SARs are used for a number of conservation purposes, including predicting extinction rates, setting conservation targets, and identifying biodiversity hotspots. Such applications can be improved by a detailed understanding of the factors promoting spatial variation in the slope of SARs, which is currently the subject of a vigorous debate. Moreover, very few studies have considered the anthropogenic influences on the slopes of SARs; this is particularly surprising given that in much of the world areas with high human population density are typically those with a high number of species, which generates conservation conflicts. Here we determine correlates of spatial variation in the slopes of species-area relationships, using the British avifauna as a case study. Whilst we focus on human population density, a widely used index of human activities, we also take into account (1) the rate of increase in habitat heterogeneity with increasing area, which is frequently proposed to drive SARs, (2) environmental energy availability, which may influence SARs by affecting species occupancy patterns, and (3) species richness. We consider environmental variables measured at both local (10 km x 10 km) and regional (290 km x 290 km) spatial grains, but find that the former consistently provides a better fit to the data. In our case study, the effect of species richness on the slope SARs appears to be scale dependent, being negative at local scales but positive at regional scales. In univariate tests, the slope of the SAR correlates negatively with human population density and environmental energy availability, and positively with the rate of increase in habitat heterogeneity. We conducted two sets of multiple regression analyses, with and without species richness as a predictor. When species richness is included it exerts a dominant effect, but when it is excluded temperature has the dominant effect on the slope of the SAR, and the effects of other predictors are marginal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bone morphogenetic proteins (BMPs) are secreted extracellular matrix (ECM)-associated proteins that regulate a wide range of developmental processes, including limb and kidney formation. A critical element of BMP regulation is the presence of secreted antagonists that bind and inhibit BMP binding to their cognate Ser/Thr kinase receptors at the plasma membrane. Antagonists such as Noggin, Chordin, Gremlin (Grem1), and twisted gastrulation-1 (Twsg1) have been shown to inhibit BMP action in a range of different cell types and developmental stage-specific contexts. Here we review new developments in the field of BMP and BMP antagonist biology during mammalian development and suggest strategies for targeting these proteins in human disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

How incretins regulate presence of their receptors at the cell surface and their activity is of paramount importance for the development of therapeutic strategies targeting these receptors. We have studied internalization of the human Glucose-Insulinotropic Polypeptide receptor (GIPR). GIP stimulated rapid robust internalization of the GIPR, the major part being directed to lysosomes. GIPR internalization involved mainly clathrin-coated pits, AP-2 and dynamin. However, neither GIPR C-terminal region nor β-arrestin1/2 was required. Finally, N-acetyl-GIP recognized as a dipeptidyl-IV resistant analogue, fully stimulated cAMP production with a ∼15-fold lower potency than GIP and weakly stimulated GIPR internalization and desensitization of cAMP response. Furthermore, docking N-acetyl-GIP in the binding site of modelled GIPR showed slighter interactions with residues of helices 6 and 7 of GIPR compared to GIP. Therefore, incomplete or partial activity of N-acetyl-GIP on signaling involved in GIPR desensitization and internalization contributes to the enhanced incretin activity of this peptide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Paired Associative Stimulation (PAS) has come to prominence as a potential therapeutic intervention for the treatment of brain injury/disease, and as an experimental method with which to investigate Hebbian principles of neural plasticity in humans. Prototypically, a single electrical stimulus is directed to a peripheral nerve in advance of transcranial magnetic stimulation (TMS) delivered to the contralateral primary motor cortex (M1). Repeated pairing of the stimuli (i.e., association) over an extended period may increase or decrease the excitability of corticospinal projections from M1, in manner that depends on the interstimulus interval (ISI). It has been suggested that these effects represent a form of associative long-term potentiation (LTP) and depression (LTD) that bears resemblance to spike-timing dependent plasticity (STDP) as it has been elaborated in animal models. With a large body of empirical evidence having emerged since the cardinal features of PAS were first described, and in light of the variations from the original protocols that have been implemented, it is opportune to consider whether the phenomenology of PAS remains consistent with the characteristic features that were initially disclosed. This assessment necessarily has bearing upon interpretation of the effects of PAS in relation to the specific cellular pathways that are putatively engaged, including those that adhere to the rules of STDP. The balance of evidence suggests that the mechanisms that contribute to the LTP- and LTD-type responses to PAS differ depending on the precise nature of the induction protocol that is used. In addition to emphasizing the requirement for additional explanatory models, in the present analysis we highlight the key features of the PAS phenomenology that require interpretation.