951 resultados para Receptors, Cholinergic
Resumo:
Although it is known that tumor necrosis factor receptor (TNFR) signaling plays a crucial role in vascular integrity and homeostasis, the contribution of each receptor to these processes and the signaling pathway involved are still largely unknown. Here, we show that targeted gene knockdown of TNFRSF1B in zebrafish embryos results in the induction of a caspase-8, caspase-2 and P53-dependent apoptotic program in endothelial cells that bypasses caspase-3. Furthermore, the simultaneous depletion of TNFRSF1A or the activation of NF-κB rescue endothelial cell apoptosis, indicating that a signaling balance between both TNFRs is required for endothelial cell integrity. In endothelial cells, TNFRSF1A signals apoptosis through caspase-8, whereas TNFRSF1B signals survival via NF-κB. Similarly, TNFα promotes the apoptosis of human endothelial cells through TNFRSF1A and triggers caspase-2 and P53 activation. We have identified an evolutionarily conserved apoptotic pathway involved in vascular homeostasis that provides new therapeutic targets for the control of inflammation- and tumor-driven angiogenesis.
Resumo:
Small chemicals like drugs tend to bind to proteins via noncovalent bonds, e.g. hydrogen bonds, salt bridges or electrostatic interactions. Some chemicals interact with other molecules than the actual target ligand, representing so-called 'off-target' activities of drugs. Such interactions are a main cause of adverse side effects to drugs and are normally classified as predictable type A reactions. Detailed analysis of drug-induced immune reactions revealed that off-target activities also affect immune receptors, such as highly polymorphic human leukocyte antigens (HLA) or T cell receptors (TCR). Such drug interactions with immune receptors may lead to T cell stimulation, resulting in clinical symptoms of delayed-type hypersensitivity. They are assigned the 'pharmacological interaction with immune receptors' (p-i) concept. Analysis of p-i has revealed that drugs bind preferentially or exclusively to distinct HLA molecules (p-i HLA) or to distinct TCR (p-i TCR). P-i reactions differ from 'conventional' off-target drug reactions as the outcome is not due to the effect on the drug-modified cells themselves, but is the consequence of reactive T cells. Hence, the complex and diverse clinical manifestations of delayed-type hypersensitivity are caused by the functional heterogeneity of T cells. In the abacavir model of p-i HLA, the drug binding to HLA may result in alteration of the presenting peptides. More importantly, the drug binding to HLA generates a drug-modified HLA, which stimulates T cells directly, like an allo-HLA. In the sulfamethoxazole model of p-i TCR, responsive T cells likely require costimulation for full T cell activation. These findings may explain the similarity of delayed-type hypersensitivity reactions to graft-versus-host disease, and how systemic viral infections increase the risk of delayed-type hypersensitivity reactions.
Resumo:
The postnatal development and maturation of the gastrointestinal (GI) tract of neonatal calves is crucial for their survival. Major morphological and functional changes in the calf's GI tract initiated by colostrum bioactive substances promote the establishment of intestinal digestion and absorption of food. It is generally accepted that colostrum intake provokes the maturation of organs and systems in young calves, illustrating the significance of the cow-to-calf connection at birth. These postnatal adaptive changes of the GI tissues in neonatal calves are especially induced by the action of bioactive substances such as insulin-like growth factors, hormones, or cholesterol carriers abundantly present in colostrum. These substances interact with specific cell-surface receptors or receptor-like transporters expressed in the GI wall of neonatal calves to elicit their biological effects. Therefore, the abundance and activity of cell surface receptors and receptor-like transporters binding colostral bioactive substances are a key aspect determining the effects of the cow-to-calf connection at birth. The present review compiles the information describing the effects of colostrum feeding on selected serum metabolic and endocrine traits in neonatal calves. In this context, the current paper discusses specifically the consequences of colostrum feeding on the GI expression and activity of cell-receptors and receptor-like transporters binding growth hormone, insulin-like growth factors, insulin, or cholesterol acceptors in neonatal calves.
Resumo:
Nogo-A is a myelin associated protein and one of the most potent neurite growth inhibitors in the central nervous system. Interference with Nogo-A signaling has thus been investigated as therapeutic target to promote functional recovery in CNS injuries. Still, the finding that Nogo-A presents a fairly ubiquitous expression in many types of neurons in different brain regions, in the eye and even in the inner ear suggests for further functions besides the neurite growth repression. Indeed, a growing number of studies identified a variety of functions including regulation of neuronal stem cells, modulation of microglial activity, inhibition of angiogenesis and interference with memory formation. Aim of the present commentary is to draw attention on these less well-known and sometimes controversial roles of Nogo-A. Furthermore, we are addressing the role of Nogo-A in neuropathological conditions such as ischemic stroke, schizophrenia and neurodegenerative diseases.
Resumo:
Scopolamine is a high affinity muscarinic antagonist that is used for the prevention of post-operative nausea and vomiting. 5-HT3 receptor antagonists are used for the same purpose and are structurally related to scopolamine. To examine whether 5-HT3 receptors are affected by scopolamine we examined the effects of this drug on the electrophysiological and ligand binding properties of 5-HT3A receptors expressed in Xenopus oocytes and HEK293 cells, respectively. 5-HT3 receptor-responses were reversibly inhibited by scopolamine with an IC50 of 2.09 μM. Competitive antagonism was shown by Schild plot (pA2 = 5.02) and by competition with the 5-HT3 receptor antagonists [3H]granisetron (Ki = 6.76 µM) and G-FL (Ki = 4.90 µM). The related molecule, atropine, similarly inhibited 5-HT evoked responses in oocytes with an IC50 of 1.74 µM, and competed with G-FL with a Ki of 7.94 µM. The reverse experiment revealed that granisetron also competitively bound to muscarinic receptors (Ki = 6.5 µM). In behavioural studies scopolamine is used to block muscarinic receptors and induce a cognitive deficit, and centrally administered concentrations can exceed the IC50 values found here. It is therefore possible that 5-HT3 receptors are also inhibited. Studies that utilise higher concentrations of scopolamine should be mindful of these potential off-target effects.
Resumo:
Disulfoton (O,O, diethyl S-2-(ethylthio)ethyl phosphorodithioate) and other organophosphorus ester compounds are insecticides which inhibit acetylcholinesterase. Chemicals of this class cause signs of toxicity in mammals which are referable to acculmulation of acetylcholine at neuroeffector sites. A tolerance to this toxic action can be induced in experimental animals by giving multiple, sublethal doses of the compounds. There is strong evidence that disulfoton tolerance occurs because of a reduction in the sensitivity of tissues in the affected animals to acetylcholine.^ Experiments were designed to test the possibility that a decrease in the number of muscarinic cholinergic receptors could be downmodulating the sensitivity of tissues to acetylcholine. It was found that, concomitant with the onset of disulfoton tolerance, there was a decrease relative to control values in the specific binding of {('3)H} quinuclidinyl benzilate ({('3)H}QNB, a compound which selectively labels muscarinic cholinergic receptors) to homogenates of rat brain and ileal muscle. The decrease in {('3)H}QNB binding was due to a reduction in the density of muscarinic receptors. There was, however, no alteration in the binding of {('3)H} QNB, or the muscarinic agonists {('3)H} oxotremorine-M and oxotremorine to atria from disulfoton-tolerant rats. The possibility that cardiac tissue was not subsensitive to cholinergic agonists was ruled out in experiments testing the effect of the muscarinic agonist carbachol on heart rate in vivo, and the negative chronotropic effect of oxotremorine on atria from disulfoton-tolerant rats: a clear reduction in the sensitivity to cholinergic agonists was seen in each case. It was, therefore concluded that the specificity and temporal correlation of {('3)H}QNB binding decreases suggested that the loss of muscarinic receptors might play a role in modulating the sensitivity of several tissues to acetylcholine, but that other mechanisms also contribute to the tolerance phenomenon.^ Other experiments revealed that disulfoton tolerance, as measured by resistance to the lethal effects of carbachol, could be induced by feeding rats low levels of the organophosphorus ester in the diet. The concentration of disulfoton used inhibited acetylcholinesterase, but not to the extent that overt signs of toxicity were observed. These results suggested that tolerance to organophosphorus ester insecticides could be induced in rodents with a dosing scheme which more closely modeled the sort of low level exposures which would be expected in humans environmentally or occupationally in contact with these compounds. ^
Resumo:
Levodopa, the precursor of dopamine, is currently the drug of choice in the treatment of Parkinson's disease. Recently, two direct dopamine agonists, bromocriptine and pergolide, have been tested for the treatment of Parkinson's disease because of reduced side effects compared to levodopa. Few studies have evaluated the effects of long-term treatment of dopamine agonists on dopamine receptor regulation in the central nervous system. Thus, the purpose of this study was to determine whether chronic dopamine agonist treatment produces a down-regulation of striatal dopamine receptor function and to compare the results of the two classes of dopaminergic drugs.^ Levodopa with carbidopa, a peripheral decarboxylase inhibitor, was administered orally to rats whereas bromocriptine and pergolide were injected intraperitoneally once daily. Several neurochemical parameters were examined from 1 to 28 days.^ Levodopa minimally decreased striatal D-1 receptor activity but increased the number of striatal D-2 binding sites. Levodopa increased the V(,max) of tyrosine hydroxylase (TH) in all brain regions tested. Protein blot analysis of striatal TH indicated a significant increase in the amount of TH present. Dopamine-beta-hydroxylase (DBH) activity was markedly decreased in all brain regions studied and mixing experiments of control and drug-treated cortices did not show the presence of an increased level of endogenous inhibitors.^ Bromocriptine treatment decreased the number of D-2 binding sites. Striatal TH activity was decreased and protein blot analysis indicated no change in TH quantity. The specificity of bromocriptine for striatal TH suggested that bromocriptine preferentially interacts with dopamine autoreceptors.^ Combination levodopa-bromocriptine was administered for 12 days. There was a decrease in both D-1 receptor activity and D-2 binding sites, and a decrease in brain HVA levels suggesting a postsynaptic receptor action. Pergolide produced identical results to the combination levodopa-bromocriptine studies.^ In conclusion, combination levodopa-bromocriptine and pergolide treatments exhibited the expected down-regulation of dopamine receptor activity. In contrast, levodopa appeared to up-regulate dopamine receptor activity. Thus, these data may help to explain, on a biochemical basis, the decrease in the levodopa-induced side effects noted with combination levodopa-bromocriptine or pergolide therapies in the treatment of Parkinson's disease. ^
Resumo:
Chronic administration of psychomotor stimulants has been reported to produce behavioral sensitization to its effects on motor activity. This adaptation may be related to the pathophysiology of recurrent psychiatric disorders. Since disturbances in circadian rhythms are also found in many of these disorders, the relationship between sensitization and chronobiological factors became of interest. Therefore, a computerized monitoring system investigated the following: whether repeated exposure to methylphenidate (MPD) and amphetamine (AMP) could produce sensitization to its locomotor effects in the rat; whether sensitization to MPD and AMP was dependent on the circadian time of drug administration; whether the baseline levels of locomotor activity would be effected by repeated exposure to MPD and AMP; whether the expression of a sensitized response could be affected by the photoperiod; and whether MK-801, a non-competitive NMDA antagonist, could disrupt the development of sensitization to MPD. Dawley rats were housed in test cages and motor activity was recorded continuously for 16 days. The first 2 days served as baseline for each rat, and on day 3 each rat received a saline injection. The locomotor response to 0.6, 2.5, or 10 mg/kg of MPD was tested on day 4, followed by five days of single injections of 2.5 mg/kg MPD (days 5–9). After five days without injection (days 10–14) rats were re-challenged (day 15) with the same doses they received on day 4. There were three separate dose groups ran at four different times of administration, 08:00, 14:00, 20:00, or 02:00 (i.e. 12 groups). The same protocol was conducted with AMP with the doses of 0.3, 0.6, and 1.2 mg/kg given on day 4 and 15, and 0.6 mg/kg AMP as the repeated dose on days 5 to 9. In the second set of experiments only sensitization to MPD was investigated. The expression of the sensitized response was dose-dependent and mainly observed with challenge of the lower dose groups. The development of sensitization to MPD and ANT was differentially time-dependent. For MPD, the most robust sensitization occurred during the light phase, with no sensitization during the middle of the dark phase. (Abstract shortened by UMI.) ^
Resumo:
The dorsal cochlear nucleus (DCN) receives auditory information via the auditory nerve coming from the cochlea. It is responsible for much of the integration of auditory information, and it projects this auditory information to higher auditory brain centers for further processing. This study focuses on the DCN of adult Rhesus monkeys to characterize two specific cell types, the fusiform and cartwheel cell, based on morphometric parameters and type of glutamate receptor they express. The fusiform cell is the main projection neuron, while the cartwheel cell is the main inhibitory interneuron. Expression of AMPA glutamate receptor subunits is localized to certain cell types. The activity of the CN depends on the AMPA receptor subunit composition and expression. Immunocytochemistry, using specific antibodies for AMPA glutamate receptor subunits GluR1, GluR2/3 and GluR4, was used in conjunction with morphometry to determine the location, morphological characteristics and expression of AMPA receptor subunits in fusiform and cartwheel cells in the primate DCN. Qualitative as well as quantitative data indicates that there are important morphological differences in cell location and expression of AMPA glutamate receptor subunits between the rodent DCN and that of primates. GluR2/3 is widely expressed in the primate DCN. GluR1 is also widely expressed in the primate DCN. GluR4 is diffusely expressed. Expression of GluR2/3 and GluR4 in the primate is similar to that of the rodent. However, expression of GluR1 is different. GluR1 is only expressed by cartwheel cells in the rodent DCN, but is expressed by a variety of cells, including fusiform cells, in the DCN of the primate.
Resumo:
Retinoid therapy has been successful for the treatment of skin squamous cell carcinoma (SCC). A suppression of the predominant retinoid X receptor expressed in skin, retinoid X receptor α (RXRα), has been reported in skin SCC. These observations have led to the hypothesis that retinoid receptor loss contributes to the tumorigenic phenotype of epithelial cancers. To test this hypothesis, the RXRα gene was mapped in order to generate a targeting construct. Additionally the transcriptional regulation of the human RXRα a gene in keratinocytes was characterized after identifying the transcription initiation sites, the promoter, and enhancer regions of this gene. The structure is highly conserved between human and mouse. A nontumorigenic human skin-derived cell line called near diploid immortalized keratinocytes (NIKS) has the advantage of growing as organotypic raft cultures, under physiological conditions closely resembling in-vivo squamous stratification. We have exploited the raft culture technique to develop an in-vitro model for skin SCC progression that includes the NIKS cells, HaCaT cells, a premalignant cell line, and SRB 12-p9 cells, a tumorigenic SCC skin cell line. The differentiation, proliferation and nuclear receptor ligand response characteristics of this system were studied and significant and novel results were obtained. RXRs are obligate heterodimerization partners with many of the nuclear hormone receptors, including retinoic acid receptors (RARs), vitamin D3 receptors (VDR), thyroid hormone receptors (T3 R) and peroxisome proliferator activate receptors (PPARs), which are all known to be active in skin. Treatment of the three cell lines in raft culture with the RXR specific ligand BMS649, BMS961 (RARγ-specific), vitamin D3 (VDR ligand), thryoid hormone (T3R ligand) and clofibrate (PPARa ligand), and the combination of BMS649 with each of the 4 receptor partner ligands, resulted in distinct effects on differentiation, proliferation and apoptosis. The effects of activation of RXRs in each of the four-receptor pathways; in the context of skin SCC progression, with an emphasis on the VDR/RXR pathway, are discussed. These studies will lead to a better understanding of RXRα action in human skin and will help determine its role in SCC tumorigenesis, as well as its potential as a target for the prevention, treatment, and control of skin cancer. ^
Resumo:
Ion channels play a crucial role in the functioning of different systems of the body because of their ability to bridge the cell membrane and allow ions to pass in and out of the cell. Ionotropic glutamate receptors are one class of these important proteins and have been shown to be critical in propagating synaptic transmission in the central nervous system and in other diverse functions throughout the body. Because of their wide-ranging effects, this family of receptors is an important target for structure-function investigations to understand their mechanism of action. ^ α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are one subtype of glutamate receptors and have been shown to be the primary receptors involved in rapid excitatory signaling in the central nervous system. Agonist binding to the extracellular ligand binding domain of these receptors causes various conformational changes that culminate in formation of the ion channel. Previous structural investigations have provided important information about their mechanism of action, including uncovering a relationship between the degree of cleft closure in the binding domain and activation of the receptor. However, what question remains unanswered is how specific interactions between the agonist and the protein interplay with cleft closure to mediate receptor activation. ^ To investigate this question, I applied a multiscale approach to investigate the effects of agonist binding on various levels. Vibrational spectroscopy was utilized to investigate molecular-level interactions in the binding pocket, and fluorescence resonance energy transfer (FRET) was employed to measure cleft closure in the isolated ligand binding domain. The results of these studies in the isolated binding domain were then correlated to activation of the full receptor. These investigations showed a relationship between the strength of the interaction at the α-amine group of the agonist and extent of receptor activation, where a stronger interaction correlated to a larger activation, which was upheld even when the extent of cleft closure did not correlate to activation. These results show that this interaction at the α-amine group is critical in mediating the allosteric mechanism of activation and provide a bit more insight into how agonist binding is coupled to channel gating in AMPA receptors. ^
Resumo:
Background. Ductal carcinoma in situ (DCIS) is the most prevalent precursor to invasive breast cancer (IBC), the second leading cause of death in women in the United States. The three most important prognostic markers for IBC are Estrogen receptor (ER), Progesterone receptor (PR) and HER2/neu. The four groups (IBC) defined as (1) ER and/or PR positive and HER2/neu negative, (2) ER and/or PR positive and HER2/neu positive (3) ER and/or PR negative and HER2/neu positive and (4) negative for all three of these receptors (Triple negative). However, they have not been well studied in DCIS. This is an exploratory study with a primary objective to examine the prevalence of ER, PR, and HER2/neu in DCIS, to explore if the defined groups of IBC occur in DCIS and to consider the biological relationship between these four groups and the proliferative activity of the tumor. A secondary goal of this study is to examine the relationship between grade and proliferative activity. Methods. Using immunohistochemistry, I have measured Ki-67, ER, PR and HER2/neu positivity for a series of cases of DCIS. Results. 20 ER and/or PR positive and HER2/neu negative (50%) with average PI of 0.05, 7 ER and/or PR positive and HER2/neu positive (17.5%) with average PI of 0.14, 10 ER and/or PR negative and HER2/neu positive (25%) with average PI of 0.18, and three triple negative (7.5%) with average PI of 0.18. ER and/or PR positive and HER2/neu positive group has the highest PI (p<0.001). Further, the ER and/or PR positive and HER2/neu positive group show a linear relationship between PI and average ER/PR positivity (R=0.6). PI increases with higher grades. Conclusion. PI appears to depend upon the average fraction of positive ER/PR tumor cells, possibly with a synergistic dependence when HER2/neu is positive. If ER/PR is negative, then both HER2/neu positive and the triple negative cases appear to cluster around an average PI that is higher than the average PI in HER2/neu negative ER/PR positive negative cases. In the triple negative tumors there must be another driver of proliferation.^
Resumo:
Considerable evidence suggests that central cholinergic neurons participate in either acquisition, storage or retrieval of information. Experiments were designed to evaluate information processing in mice following either reversible or irreversible impairment in central cholinergic activity. The cholinergic receptor antagonists, atropine and methylatropine were used to reversibly inhibit cholinergic transmission. Irreversible impairment in central cholinergic function was achieved by central administration of the cholinergic-specific neurotoxins, N-ethyl-choline aziridinium (ECA) and N-ethyl-acetylcholine aziridinium (EACA).^ ECA and EACA appear to act by irreversible inhibition of high affinity choline uptake (proposed rate-limiting step in acetylcholine synthesis). Intraventricular administration of ECA or EACA produced persistent reduction in hippocampal choline acetyltransferase activity. Other neuronal systems and brain regions showed no evidence of toxicity.^ Mice treated with either ECA or EACA showed behavioral deficits associated with cholinergic dysfunction. Passive avoidance behavior was significantly impaired by cholinotoxin treatment. Radial arm maze performance was also significantly impaired in cholinotoxin-treated animals. Deficits in radial arm maze performance were transient, however, such that rapid and apparent complete behavioral recovery was seen during retention testing. The centrally active cholinergic receptor antagonist atropine also caused significant impairment in radial arm maze behavior, while equivalent doses of methylatropine were without effect.^ The relative effects of cholinotoxin and receptor antagonist treatment on short-term (working) memory and long-term (reference) memory in radial arm maze behavior were examined. Maze rotation studies indicated that there were at least two different response strategies which could result in accurate maze performance. One strategy involved the use of response algorithms and was considered to be a function of reference memory. Another strategy appeared to be primarily dependent on spatial working memory. However, all behavioral paradigms with multiple trails have reference memory requirements (i.e. information useful over all trials). Performance was similarly affected following either cholinotoxin or anticholinergic treatment, regardless of the response strategy utilized. In addition, rates of behavioral recovery following cholinotoxin treatment were similar between response groups. It was concluded that both cholinotoxin and anticholinergic treatment primarily resulted in impaired reference memory processes. ^
Resumo:
Long-term potentiation (LTP) is a rapidly induced and long lasting increase in synaptic strength and is the leading cellular model for learning and memory in the mammalian brain. LTP was first identified in the hippocampus, a structure implicated in memory formation. LTP induction is dependent on postsynaptic Ca2+ increases mediated by N-methyl-D-aspartate (NMDA) receptors. Activation of other postsynaptic routes of Ca2+ entry, such as voltage-dependent Ca2+ channels (VDCCs) have subsequently been shown to induce a long-lasting increase in synaptic strength. However, it is unknown if VDCC-induced LTP utilized similar cellular mechanisms as the classical NMDA receptor-dependent LTP and if these two forms of LTP display similar properties. This dissertation determines the similarities and differences in VDCC and NMDA receptor-dependent LTP in area CA1 of hippocampal slices and demonstrates that VDCCs and NMDA receptors activate similar cellular mechanisms, such as protein kinases, to induce LTP. However, VDCC and NMDA receptor activated LTP induction mechanisms are compartmentalized in the postsynaptic neuron, such that they do not interact. Consistent with activation properties of NMDA receptors and VDCCs, NMDA receptor and VDCC-dependent LTP have different induction properties. In contrast to NMDA-dependent LTP, VDCC-induced potentiation does not require evoked presynaptic stimulation or display input specificity. These results indicate that there are two different routes of postsynaptic Ca2+ which can induce LTP and the compartmentation of VDCCs and NMDA receptors and/or their resulting Ca2+ increases may account for the distinction between these LTP induction mechanisms.^ One of the molecular targets for postsynaptic Ca2+ that is required for the induction of LTP is protein kinases. Evidence for the role of protein kinase activity in LTP expression is either correlational or controversial. We have utilized a broad range and potent inhibitors of protein kinases to systematically examine the temporal requirement for protein kinases in the induction and expression of LTP. Our results indicate that there is a critical period of persistent protein kinase activity required for LTP induction activated by tetanic stimulation and extending until 20 min after HFS. In addition, our results suggest that protein kinase activity during and immediately after HFS is not sufficient for LTP induction. These results provide evidence for persistent and/or Ca2+ independent protein kinase activity involvement in LTP induction. ^
Resumo:
The complement system functions as a major effector for both the innate and adaptive immune response. Activation of the complement cascade by either the classical, alternative, or lectin pathway promotes the proteolysis of C3 and C5 thereby generating C3a and C5a. Referred to as anaphylatoxins, the C3a and C5a peptides mediate biological effects upon binding to their respective receptors; C3a binds to the C3a receptor (C3aR) while C5a binds to the C5a receptor (C5aR, CD88). Both C3a and C5a are known for their broad proinflammatory effects. Elevated levels of both peptides have been isolated from patients with a variety of inflammatory diseases such as COPD, asthma, RA, SLE, and sepsis. Recent studies suggest that C5a is a critical component in the acquired neutrophil dysfunction, coagulopathy, and progressive multi-organ dysfunction characteristic of sepsis. The primary hypothesis of this dissertation was that preventing C3a-C3aR and C5a-C5aR mediated pro-inflammatory effects would improve survival in endotoxic, bacteremic and septic shock. To test this hypothesis, the murine C3aR and C5aR genes were disrupted. Following disruption of both the C3aR and C5aR genes, no abnormalities were identified other than the absence of their respective mRNA and protein. In models of both endotoxic and bacteremic shock, C3aR deficient mice suffered increased mortality when compared to their wild type littermates. C3aR deficient mice also had elevated circulating IL-1β levels. Using a model of sepsis, C3aR deficient mice had a higher circulating concentration of IL-6 and decreased peritoneal inflammatory infiltration. While these results were unexpected, they support an emerging role for C3a in immunomodulation. In contrast, following endotoxic or bacteremic shock, C5aR deficient mice experienced increased survival, less hemoconcentration and less thrombocytopenia. It was later determined that C5a mediated histamine release significantly contributes to host morbidity and mortality in bacteremic shock. These studies provide evidence that C5a functions primarily as a proinflammatory molecule in models of endotoxic and bacteremic shock. In the same models, C3a-C3aR interactions suppress the inflammatory response and protect the host. Collectively, these results present in vivo evidence that C3a and C5a have divergent biological functions. ^