951 resultados para Realistic threat
Resumo:
Although all brain cells bear in principle a comparable potential in terms of energetics, in reality they exhibit different metabolic profiles. The specific biochemical characteristics explaining such disparities and their relative importance are largely unknown. Using a modeling approach, we show that modifying the kinetic parameters of pyruvate dehydrogenase and mitochondrial NADH shuttling within a realistic interval can yield a striking switch in lactate flux direction. In this context, cells having essentially an oxidative profile exhibit pronounced extracellular lactate uptake and consumption. However, they can be turned into cells with prominent aerobic glycolysis by selectively reducing the aforementioned parameters. In the case of primarily oxidative cells, we also examined the role of glycolysis and lactate transport in providing pyruvate to mitochondria in order to sustain oxidative phosphorylation. The results show that changes in lactate transport capacity and extracellular lactate concentration within the range described experimentally can sustain enhanced oxidative metabolism upon activation. Such a demonstration provides key elements to understand why certain brain cell types constitutively adopt a particular metabolic profile and how specific features can be altered under different physiological and pathological conditions in order to face evolving energy demands.
Resumo:
Biological monitoring of occupational exposure is characterized by important variability, due both to variability in the environment and to biological differences between workers. A quantitative description and understanding of this variability is important for a dependable application of biological monitoring. This work describes this variability,using a toxicokinetic model, for a large range of chemicals for which reference biological reference values exist. A toxicokinetic compartmental model describing both the parent compound and its metabolites was used. For each chemical, compartments were given physiological meaning. Models were elaborated based on physiological, physicochemical, and biochemical data when available, and on half-lives and central compartment concentrations when not available. Fourteen chemicals were studied (arsenic, cadmium, carbon monoxide, chromium, cobalt, ethylbenzene, ethyleneglycol monomethylether, fluorides, lead, mercury, methyl isobutyl ketone, penthachlorophenol, phenol, and toluene), representing 20 biological indicators. Occupational exposures were simulated using Monte Carlo techniques with realistic distributions of both individual physiological parameters and exposure conditions. Resulting biological indicator levels were then analyzed to identify the contribution of environmental and biological variability to total variability. Comparison of predicted biological indicator levels with biological exposure limits showed a high correlation with the model for 19 out of 20 indicators. Variability associated with changes in exposure levels (GSD of 1.5 and 2.0) is shown to be mainly influenced by the kinetics of the biological indicator. Thus, with regard to variability, we can conclude that, for the 14 chemicals modeled, biological monitoring would be preferable to air monitoring. For short half-lives (less than 7 hr), this is very similar to the environmental variability. However, for longer half-lives, estimated variability decreased. [Supplementary materials are available for this article. Go to the publisher's online edition of Journal of Occupational and Environmental Hygiene for the following free supplemental resource: tables detailing the CBTK models for all 14 chemicals and the symbol nomenclature that was used.] [Authors]
Resumo:
Glioblastomas are highly diffuse, malignant tumors that have so far evaded clinical treatment. The strongly invasive behavior of cells in these tumors makes them very resistant to treatment, and for this reason both experimental and theoretical efforts have been directed toward understanding the spatiotemporal pattern of tumor spreading. Although usual models assume a standard diffusion behavior, recent experiments with cell cultures indicate that cells tend to move in directions close to that of glioblastoma invasion, thus indicating that a biasedrandom walk model may be much more appropriate. Here we show analytically that, for realistic parameter values, the speeds predicted by biased dispersal are consistent with experimentally measured data. We also find that models beyond reaction–diffusion–advection equations are necessary to capture this substantial effect of biased dispersal on glioblastoma spread
Resumo:
Classic climatic models use constitutive laws without any response time. A more realistic approach to the natural processes governing climate dynamics must introduce response time for heat and radiation fluxes. Extended irreversible thermodynamics (EIT) is a good thermodynamical framework for introducing nonclassical constitutive laws. In the present study EIT has been used to analyze a Budyko–Sellers one-dimensional energybalance model developed by G. R. North. The results present self-sustained periodic oscillations when the response time is greater than a critical value. The high-frequency (few kiloyears) damped and nondamped oscillations obtained can be related to abrupt climatic changes without any variation in the external forcing of the system
Batch effect confounding leads to strong bias in performance estimates obtained by cross-validation.
Resumo:
BACKGROUND: With the large amount of biological data that is currently publicly available, many investigators combine multiple data sets to increase the sample size and potentially also the power of their analyses. However, technical differences ("batch effects") as well as differences in sample composition between the data sets may significantly affect the ability to draw generalizable conclusions from such studies. FOCUS: The current study focuses on the construction of classifiers, and the use of cross-validation to estimate their performance. In particular, we investigate the impact of batch effects and differences in sample composition between batches on the accuracy of the classification performance estimate obtained via cross-validation. The focus on estimation bias is a main difference compared to previous studies, which have mostly focused on the predictive performance and how it relates to the presence of batch effects. DATA: We work on simulated data sets. To have realistic intensity distributions, we use real gene expression data as the basis for our simulation. Random samples from this expression matrix are selected and assigned to group 1 (e.g., 'control') or group 2 (e.g., 'treated'). We introduce batch effects and select some features to be differentially expressed between the two groups. We consider several scenarios for our study, most importantly different levels of confounding between groups and batch effects. METHODS: We focus on well-known classifiers: logistic regression, Support Vector Machines (SVM), k-nearest neighbors (kNN) and Random Forests (RF). Feature selection is performed with the Wilcoxon test or the lasso. Parameter tuning and feature selection, as well as the estimation of the prediction performance of each classifier, is performed within a nested cross-validation scheme. The estimated classification performance is then compared to what is obtained when applying the classifier to independent data.
Resumo:
Uncertainty quantification of petroleum reservoir models is one of the present challenges, which is usually approached with a wide range of geostatistical tools linked with statistical optimisation or/and inference algorithms. The paper considers a data driven approach in modelling uncertainty in spatial predictions. Proposed semi-supervised Support Vector Regression (SVR) model has demonstrated its capability to represent realistic features and describe stochastic variability and non-uniqueness of spatial properties. It is able to capture and preserve key spatial dependencies such as connectivity, which is often difficult to achieve with two-point geostatistical models. Semi-supervised SVR is designed to integrate various kinds of conditioning data and learn dependences from them. A stochastic semi-supervised SVR model is integrated into a Bayesian framework to quantify uncertainty with multiple models fitted to dynamic observations. The developed approach is illustrated with a reservoir case study. The resulting probabilistic production forecasts are described by uncertainty envelopes.
Resumo:
Functionally relevant large scale brain dynamics operates within the framework imposed by anatomical connectivity and time delays due to finite transmission speeds. To gain insight on the reliability and comparability of large scale brain network simulations, we investigate the effects of variations in the anatomical connectivity. Two different sets of detailed global connectivity structures are explored, the first extracted from the CoCoMac database and rescaled to the spatial extent of the human brain, the second derived from white-matter tractography applied to diffusion spectrum imaging (DSI) for a human subject. We use the combination of graph theoretical measures of the connection matrices and numerical simulations to explicate the importance of both connectivity strength and delays in shaping dynamic behaviour. Our results demonstrate that the brain dynamics derived from the CoCoMac database are more complex and biologically more realistic than the one based on the DSI database. We propose that the reason for this difference is the absence of directed weights in the DSI connectivity matrix.
Resumo:
Weather radar observations are currently the most reliable method for remote sensing of precipitation. However, a number of factors affect the quality of radar observations and may limit seriously automated quantitative applications of radar precipitation estimates such as those required in Numerical Weather Prediction (NWP) data assimilation or in hydrological models. In this paper, a technique to correct two different problems typically present in radar data is presented and evaluated. The aspects dealt with are non-precipitating echoes - caused either by permanent ground clutter or by anomalous propagation of the radar beam (anaprop echoes) - and also topographical beam blockage. The correction technique is based in the computation of realistic beam propagation trajectories based upon recent radiosonde observations instead of assuming standard radio propagation conditions. The correction consists of three different steps: 1) calculation of a Dynamic Elevation Map which provides the minimum clutter-free antenna elevation for each pixel within the radar coverage; 2) correction for residual anaprop, checking the vertical reflectivity gradients within the radar volume; and 3) topographical beam blockage estimation and correction using a geometric optics approach. The technique is evaluated with four case studies in the region of the Po Valley (N Italy) using a C-band Doppler radar and a network of raingauges providing hourly precipitation measurements. The case studies cover different seasons, different radio propagation conditions and also stratiform and convective precipitation type events. After applying the proposed correction, a comparison of the radar precipitation estimates with raingauges indicates a general reduction in both the root mean squared error and the fractional error variance indicating the efficiency and robustness of the procedure. Moreover, the technique presented is not computationally expensive so it seems well suited to be implemented in an operational environment.
Resumo:
BACKGROUND: The increased use of meta-analysis in systematic reviews of healthcare interventions has highlighted several types of bias that can arise during the completion of a randomised controlled trial. Study publication bias and outcome reporting bias have been recognised as a potential threat to the validity of meta-analysis and can make the readily available evidence unreliable for decision making. METHODOLOGY/PRINCIPAL FINDINGS: In this update, we review and summarise the evidence from cohort studies that have assessed study publication bias or outcome reporting bias in randomised controlled trials. Twenty studies were eligible of which four were newly identified in this update. Only two followed the cohort all the way through from protocol approval to information regarding publication of outcomes. Fifteen of the studies investigated study publication bias and five investigated outcome reporting bias. Three studies have found that statistically significant outcomes had a higher odds of being fully reported compared to non-significant outcomes (range of odds ratios: 2.2 to 4.7). In comparing trial publications to protocols, we found that 40-62% of studies had at least one primary outcome that was changed, introduced, or omitted. We decided not to undertake meta-analysis due to the differences between studies. CONCLUSIONS: This update does not change the conclusions of the review in which 16 studies were included. Direct empirical evidence for the existence of study publication bias and outcome reporting bias is shown. There is strong evidence of an association between significant results and publication; studies that report positive or significant results are more likely to be published and outcomes that are statistically significant have higher odds of being fully reported. Publications have been found to be inconsistent with their protocols. Researchers need to be aware of the problems of both types of bias and efforts should be concentrated on improving the reporting of trials.
Resumo:
Many studies have forecasted the possible impact of climate change on plant distribution using models based on ecological niche theory. In their basic implementation, niche-based models do not constrain predictions by dispersal limitations. Hence, most niche-based modelling studies published so far have assumed dispersal to be either unlimited or null. However, depending on the rate of climatic change, the landscape fragmentation and the dispersal capabilities of individual species, these assumptions are likely to prove inaccurate, leading to under- or overestimation of future species distributions and yielding large uncertainty between these two extremes. As a result, the concepts of "potentially suitable" and "potentially colonisable" habitat are expected to differ significantly. To quantify to what extent these two concepts can differ, we developed MIGCLIM, a model simulating plant dispersal under climate change and landscape fragmentation scenarios. MIGCLIM implements various parameters, such as dispersal distance, increase in reproductive potential over time, barriers to dispersal or long distance dispersal. Several simulations were run for two virtual species in a study area of the western Swiss Alps, by varying dispersal distance and other parameters. Each simulation covered the hundred-year period 2001-2100 and three different IPCC-based temperature warming scenarios were considered. Our results indicate that: (i) using realistic parameter values, the future potential distributions generated using MIGCLIM can differ significantly (up to more than 95% decrease in colonized surface) from those that ignore dispersal; (ii) this divergence increases both with increasing climate warming and over longer time periods; (iii) the uncertainty associated with the warming scenario can be nearly as large as the one related to dispersal parameters; (iv) accounting for dispersal, even roughly, can importantly reduce uncertainty in projections.
Resumo:
Iowa agriculture depends on anhydrous ammonia as a low-cost form of nitrogen fertilizer on 61 percent of Iowa’s 12.4 million acres of corn. Now we find a threat to that source of nutrient—the theft of anhydrous ammonia for use in making a powerful, illegal narcotic called methamphetamine. Naturally, the fertilizer industry is outraged by the illegal and illicit use of our products. We want to play a role in preventing abuse in the future. By raising awareness, knowing how to respond and using the Meth Inhibitor, fertilizer dealers can assist law enforcement in combating this illicit use of a product important to Iowa farmers.
Resumo:
When a tornado is coming, you have only a short amount of time to make life-or-death decisions. Advance planning and quick response are the keys to surviving a tornado. Conduct tornado drills each tornado season. Designate an area in the home as a shelter, and practice having everyone in the family go there in response to a tornado threat. Discuss with family members the difference between a "tornado watch" and a "tornado warning."
Resumo:
BACKGROUND: Progress in perinatal medicine has made it possible to increase the survival of very or extremely low birthweight infants. Developmental outcomes of surviving preterm infants have been analysed at the paediatric, neurological, cognitive, and behavioural levels, and a series of perinatal and environmental risk factors have been identified. The threat to the child's survival and invasive medical procedures can be very traumatic for the parents. Few empirical reports have considered post-traumatic stress reactions of the parents as a possible variable affecting a child's outcome. Some studies have described sleeping and eating problems as related to prematurity; these problems are especially critical for the parents. OBJECTIVE: To examine the effects of post-traumatic reactions of the parents on sleeping and eating problems of the children. DESIGN: Fifty families with a premature infant (25-33 gestation weeks) and a control group of 25 families with a full term infant participated in the study. Perinatal risks were evaluated during the hospital stay. Mothers and fathers were interviewed when their children were 18 months old about the child's problems and filled in a perinatal post-traumatic stress disorder questionnaire (PPQ). RESULTS: The severity of the perinatal risks only partly predicts a child's problems. Independently of the perinatal risks, the intensity of the post-traumatic reactions of the parents is an important predictor of these problems. CONCLUSIONS: These findings suggest that the parental response to premature birth mediates the risks of later adverse outcomes. Preventive intervention should be promoted.
Resumo:
The offer of new products and services is the main way to enhance the image of public libraries in public opinion and to attract the media attention that they deserve. Presented here for professional consideration and comment are fifty surprising, simple and realistic ideas that can be carried out by public libraries, with the aim of reaching unknown user groups and of maintaining the fidelity of current users.
Resumo:
The offer of new products and services is the main way to enhance the image of public libraries in public opinion and to attract the media attention that they deserve. Presented here for professional consideration and comment are fifty surprising, simple and realistic ideas that can be carried out by public libraries, with the aim of reaching unknown user groups and of maintaining the fidelity of current users.