942 resultados para Random matrix
Resumo:
This thesis develops and evaluates statistical methods for different types of genetic analyses, including quantitative trait loci (QTL) analysis, genome-wide association study (GWAS), and genomic evaluation. The main contribution of the thesis is to provide novel insights in modeling genetic variance, especially via random effects models. In variance component QTL analysis, a full likelihood model accounting for uncertainty in the identity-by-descent (IBD) matrix was developed. It was found to be able to correctly adjust the bias in genetic variance component estimation and gain power in QTL mapping in terms of precision. Double hierarchical generalized linear models, and a non-iterative simplified version, were implemented and applied to fit data of an entire genome. These whole genome models were shown to have good performance in both QTL mapping and genomic prediction. A re-analysis of a publicly available GWAS data set identified significant loci in Arabidopsis that control phenotypic variance instead of mean, which validated the idea of variance-controlling genes. The works in the thesis are accompanied by R packages available online, including a general statistical tool for fitting random effects models (hglm), an efficient generalized ridge regression for high-dimensional data (bigRR), a double-layer mixed model for genomic data analysis (iQTL), a stochastic IBD matrix calculator (MCIBD), a computational interface for QTL mapping (qtl.outbred), and a GWAS analysis tool for mapping variance-controlling loci (vGWAS).
Resumo:
We present a new version of the hglm package for fittinghierarchical generalized linear models (HGLM) with spatially correlated random effects. A CAR family for conditional autoregressive random effects was implemented. Eigen decomposition of the matrix describing the spatial structure (e.g. the neighborhood matrix) was used to transform the CAR random effectsinto an independent, but heteroscedastic, gaussian random effect. A linear predictor is fitted for the random effect variance to estimate the parameters in the CAR model.This gives a computationally efficient algorithm for moderately sized problems (e.g. n<5000).
Resumo:
We present a new version (> 2.0) of the hglm package for fitting hierarchical generalized linear models (HGLMs) with spatially correlated random effects. CAR() and SAR() families for conditional and simultaneous autoregressive random effects were implemented. Eigen decomposition of the matrix describing the spatial structure (e.g., the neighborhood matrix) was used to transform the CAR/SAR random effects into an independent, but eteroscedastic, Gaussian random effect. A linear predictor is fitted for the random effect variance to estimate the parameters in the CAR and SAR models. This gives a computationally efficient algorithm for moderately sized problems.
Resumo:
Background There is emerging evidence that the physical environment is important for health, quality of life and care, but there is a lack of valid instruments to assess health care environments. The Sheffield Care Environment Assessment Matrix (SCEAM), developed in the United Kingdom, provides a comprehensive assessment of the physical environment of residential care facilities for older people. This paper reports on the translation and adaptation of SCEAM for use in Swedish residential care facilities for older people, including information on its validity and reliability. Methods SCEAM was translated into Swedish and back-translated into English, and assessed for its relevance by experts using content validity index (CVI) together with qualitative data. After modification, the validity assessments were repeated and followed by test-retest and inter-rater reliability tests in six units within a Swedish residential care facility that varied in terms of their environmental characteristics. Results Translation and back translation identified linguistic and semantic related issues. The results of the first content validity analysis showed that more than one third of the items had item-CVI (I-CVI) values less than the critical value of 0.78. After modifying the instrument, the second content validation analysis resulted in I-CVI scores above 0.78, the suggested criteria for excellent content validity. Test-retest reliability showed high stability (96% and 95% for two independent raters respectively), and inter-rater reliability demonstrated high levels of agreement (95% and 94% on two separate rating occasions). Kappa values were very good for test-retest (κ= 0.903 and 0.869) and inter-rater reliability (κ= 0.851 and 0.832). Conclusions Adapting an instrument to a domestic context is a complex and time-consuming process, requiring an understanding of the culture where the instrument was developed and where it is to be used. A team, including the instrument’s developers, translators, and researchers is necessary to ensure a valid translation and adaption. This study showed preliminary validity and reliability evidence for the Swedish version (S-SCEAM) when used in a Swedish context. Further, we believe that the S-SCEAM has improved compared to the original instrument and suggest that it can be used as a foundation for future developments of the SCEAM model.