986 resultados para Radar remote sensing, SAR, Along Track Interferometry, Traffic, Transport geography, traffic simulation, statistical pattern recognition


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ATP-binding cassette (ABC) family of proteins comprise a group of membrane transporters involved in the transport of a wide variety of compounds, such as xenobiotics, vitamins, lipids, amino acids, and carbohydrates. Determining their regional expression patterns along the intestinal tract will further characterize their transport functions in the gut. The mRNA expression levels of murine ABC transporters in the duodenum, jejunum, ileum, and colon were examined using the Affymetrix MuU74v2 GeneChip set. Eight ABC transporters (Abcb2, Abcb3, Abcb9, Abcc3, Abcc6, Abcd1, Abcg5, and Abcg8) displayed significant differential gene expression along the intestinal tract, as determined by two statistical models (a global error assessment model and a classic ANOVA, both with a P < 0.01). Concordance with semiquantitative real-time PCR was high. Analyzing the promoters of the differentially expressed ABC transporters did not identify common transcriptional motifs between family members or with other genes; however, the expression profile for Abcb9 was highly correlated with fibulin-1, and both genes share a common complex promoter model involving the NFkappaB, zinc binding protein factor (ZBPF), GC-box factors SP1/GC (SP1F), and early growth response factor (EGRF) transcription binding motifs. The cellular location of another of the differentially expressed ABC transporters, Abcc3, was examined by immunohistochemistry. Staining revealed that the protein is consistently expressed in the basolateral compartment of enterocytes along the anterior-posterior axis of the intestine. Furthermore, the intensity of the staining pattern is concordant with the expression profile. This agrees with previous findings in which the mRNA, protein, and transport function of Abcc3 were increased in the rat distal intestine. These data reveal regional differences in gene expression profiles along the intestinal tract and demonstrate that a complete understanding of intestinal ABC transporter function can only be achieved by examining the physiologically distinct regions of the gut.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Los mapas de riesgo de inundaciones deberían mostrar las inundaciones en relación con los impactos potenciales que éstas pueden llegar a producir en personas, bienes y actividades. Por ello, es preciso añadir el concepto de vulnerabilidad al mero estudio del fenómeno físico. Así pues, los mapas de riesgo de daños por inundación son los verdaderos mapas de riesgo, ya que se elaboran, por una parte, a partir de cartografía que localiza y caracteriza el fenómeno físico de las inundaciones, y, por la otra, a partir de cartografía que localiza y caracteriza los elementos expuestos. El uso de las llamadas «nuevas tecnologías», como los SIG, la percepción remota, los sensores hidrológicos o Internet, representa un potencial de gran valor para el desarrollo de los mapas de riesgo de inundaciones, que es, hoy por hoy, un campo abierto a la investigación

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Waveform-based tomographic imaging of crosshole georadar data is a powerful method to investigate the shallow subsurface because of its ability to provide images of electrical properties in near-surface environments with unprecedented spatial resolution. A critical issue with waveform inversion is the a priori unknown source signal. Indeed, the estimation of the source pulse is notoriously difficult but essential for the effective application of this method. Here, we explore the viability and robustness of a recently proposed deconvolution-based procedure to estimate the source pulse during waveform inversion of crosshole georadar data, where changes in wavelet shape with location as a result of varying near-field conditions and differences in antenna coupling may be significant. Specifically, we examine whether a single, average estimated source current function can adequately represent the pulses radiated at all transmitter locations during a crosshole georadar survey, or whether a separate source wavelet estimation should be performed for each transmitter gather. Tests with synthetic and field data indicate that remarkably good tomographic reconstructions can be obtained using a single estimated source pulse when moderate to strong variability exists in the true source signal with antenna location. Only in the case of very strong variability in the true source pulse are tomographic reconstructions clearly improved by estimating a different source wavelet for each transmitter location.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two-dimensional aperture synthesis radiometry is the technologyselected for ESA's SMOS mission to provide high resolution L-bandradiometric imagery. The array topology is a Y-shaped structure. Theposition and number of redundant elements to minimise instrumentdegradation in case of element failure(s) are studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The standard data fusion methods may not be satisfactory to merge a high-resolution panchromatic image and a low-resolution multispectral image because they can distort the spectral characteristics of the multispectral data. The authors developed a technique, based on multiresolution wavelet decomposition, for the merging and data fusion of such images. The method presented consists of adding the wavelet coefficients of the high-resolution image to the multispectral (low-resolution) data. They have studied several possibilities concluding that the method which produces the best results consists in adding the high order coefficients of the wavelet transform of the panchromatic image to the intensity component (defined as L=(R+G+B)/3) of the multispectral image. The method is, thus, an improvement on standard intensity-hue-saturation (IHS or LHS) mergers. They used the ¿a trous¿ algorithm which allows the use of a dyadic wavelet to merge nondyadic data in a simple and efficient scheme. They used the method to merge SPOT and LANDSATTM images. The technique presented is clearly better than the IHS and LHS mergers in preserving both spectral and spatial information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spatial resolution is a key parameter of all remote sensing satellites and platforms. The nominal spatial resolution of satellites is a well-known characteristic because it is directly related to the area in ground that represents a pixel in the detector. Nevertheless, in practice, the actual resolution of a specific image obtained from a satellite is difficult to know precisely because it depends on many other factors such as atmospheric conditions. However, if one has two or more images of the same region, it is possible to compare their relative resolutions. In this paper, a wavelet-decomposition-based method for the determination of the relative resolution between two remotely sensed images of the same area is proposed. The method can be applied to panchromatic, multispectral, and mixed (one panchromatic and one multispectral) images. As an example, the method was applied to compute the relative resolution between SPOT-3, Landsat-5, and Landsat-7 panchromatic and multispectral images taken under similar as well as under very different conditions. On the other hand, if the true absolute resolution of one of the images of the pair is known, the resolution of the other can be computed. Thus, in the last part of this paper, a spatial calibrator that is designed and constructed to help compute the absolute resolution of a single remotely sensed image is described, and an example of its use is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Usual image fusion methods inject features from a high spatial resolution panchromatic sensor into every low spatial resolution multispectral band trying to preserve spectral signatures and improve spatial resolution to that of the panchromatic sensor. The objective is to obtain the image that would be observed by a sensor with the same spectral response (i.e., spectral sensitivity and quantum efficiency) as the multispectral sensors and the spatial resolution of the panchromatic sensor. But in these methods, features from electromagnetic spectrum regions not covered by multispectral sensors are injected into them, and physical spectral responses of the sensors are not considered during this process. This produces some undesirable effects, such as resolution overinjection images and slightly modified spectral signatures in some features. The authors present a technique which takes into account the physical electromagnetic spectrum responses of sensors during the fusion process, which produces images closer to the image obtained by the ideal sensor than those obtained by usual wavelet-based image fusion methods. This technique is used to define a new wavelet-based image fusion method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the development and applications of a super-resolution method, known as Super-Resolution Variable-Pixel Linear Reconstruction. The algorithm works combining different lower resolution images in order to obtain, as a result, a higher resolution image. We show that it can make significant spatial resolution improvements to satellite images of the Earth¿s surface allowing recognition of objects with size approaching the limiting spatial resolution of the lower resolution images. The algorithm is based on the Variable-Pixel Linear Reconstruction algorithm developed by Fruchter and Hook, a well-known method in astronomy but never used for Earth remote sensing purposes. The algorithm preserves photometry, can weight input images according to the statistical significance of each pixel, and removes the effect of geometric distortion on both image shape and photometry. In this paper, we describe its development for remote sensing purposes, show the usefulness of the algorithm working with images as different to the astronomical images as the remote sensing ones, and show applications to: 1) a set of simulated multispectral images obtained from a real Quickbird image; and 2) a set of multispectral real Landsat Enhanced Thematic Mapper Plus (ETM+) images. These examples show that the algorithm provides a substantial improvement in limiting spatial resolution for both simulated and real data sets without significantly altering the multispectral content of the input low-resolution images, without amplifying the noise, and with very few artifacts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reflectance, emissivity and elevation data of the sensor ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer)/Terra were used to characterize soil composition variations according to the toposequence position. Normalized data of SWIR (shortwave infrared) reflectance and TIR (thermal infrared) emissivity, coupled to a soil-fraction image from a spectral mixture model, were evaluated to separate bare soils from nonphotosynthetic vegetation. Regression relationships of some soil properties with reflectance and emissivity data were then applied on the exposed soil pixels. The resulting estimated values were plotted on the ASTER-derived digital elevation model. Results showed that the SWIR bands 5 and 6 and the TIR bands 10 and 14 measured the clay mineral absorption band and the quartz emissivity feature, respectively. These bands improved also the discrimination between nonphotosynthetic vegetation and soils. Despite the differences in pixel size and field sampling size, some soil properties were correlated with reflectance (R² of 0.65 for Al2O3 in band 6; 0.61 for Fe2O3 in band 3) and emissivity (R² of 0.65 for total sand fraction in the 10/14 band ratio). The combined use of reflectance, emissivity and elevation data revealed variations in soil composition with topography in specific parts of the landscape. From higher to lower slope positions, a general decrease in Al2O3 and increase in total sand fraction was observed, due to the prevalence of Rhodic Acrustox at the top and its gradual transition to Typic Acrustox at the bottom.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil science has sought to develop better techniques for the classification of soils, one of which is the use of remote sensing applications. The use of ground sensors to obtain soil spectral data has enabled the characterization of these data and the advancement of techniques for the quantification of soil attributes. In order to do this, the creation of a soil spectral library is necessary. A spectral library should be representative of the variability of the soils in a region. The objective of this study was to create a spectral library of distinct soils from several agricultural regions of Brazil. Spectral data were collected (using a Fieldspec sensor, 350-2,500 nm) for the horizons of 223 soil profiles from the regions of Matão, Paraguaçu Paulista, Andradina, Ipaussu, Mirandópolis, Piracicaba, São Carlos, Araraquara, Guararapes, Valparaíso (SP); Naviraí, Maracajú, Rio Brilhante, Três Lagoas (MS); Goianésia (GO); and Uberaba and Lagoa da Prata (MG). A Principal Component Analysis (PCA) of the data was then performed and a graphic representation of the spectral curve was created for each profile. The reflectance intensity of the curves was principally influenced by the levels of Fe2O3, clay, organic matter and the presence of opaque minerals. There was no change in the spectral curves in the horizons of the Latossolos, Nitossolos, and Neossolos Quartzarênicos. Argissolos had superficial horizon curves with the greatest intensity of reflection above 2,200 nm. Cambissolos and Neossolos Litólicos had curves with greater reflectance intensity in poorly developed horizons. Gleisols showed a convex curve in the region of 350-400 nm. The PCA was able to separate different data collection areas according to the region of source material. Principal component one (PC1) was correlated with the intensity of reflectance samples and PC2 with the slope between the visible and infrared samples. The use of the Spectral Library as an indicator of possible soil classes proved to be an important tool in profile classification.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil surveys are the main source of spatial information on soils and have a range of different applications, mainly in agriculture. The continuity of this activity has however been severely compromised, mainly due to a lack of governmental funding. The purpose of this study was to evaluate the feasibility of two different classifiers (artificial neural networks and a maximum likelihood algorithm) in the prediction of soil classes in the northwest of the state of Rio de Janeiro. Terrain attributes such as elevation, slope, aspect, plan curvature and compound topographic index (CTI) and indices of clay minerals, iron oxide and Normalized Difference Vegetation Index (NDVI), derived from Landsat 7 ETM+ sensor imagery, were used as discriminating variables. The two classifiers were trained and validated for each soil class using 300 and 150 samples respectively, representing the characteristics of these classes in terms of the discriminating variables. According to the statistical tests, the accuracy of the classifier based on artificial neural networks (ANNs) was greater than of the classic Maximum Likelihood Classifier (MLC). Comparing the results with 126 points of reference showed that the resulting ANN map (73.81 %) was superior to the MLC map (57.94 %). The main errors when using the two classifiers were caused by: a) the geological heterogeneity of the area coupled with problems related to the geological map; b) the depth of lithic contact and/or rock exposure, and c) problems with the environmental correlation model used due to the polygenetic nature of the soils. This study confirms that the use of terrain attributes together with remote sensing data by an ANN approach can be a tool to facilitate soil mapping in Brazil, primarily due to the availability of low-cost remote sensing data and the ease by which terrain attributes can be obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since different pedologists will draw different soil maps of a same area, it is important to compare the differences between mapping by specialists and mapping techniques, as for example currently intensively discussed Digital Soil Mapping. Four detailed soil maps (scale 1:10.000) of a 182-ha sugarcane farm in the county of Rafard, São Paulo State, Brazil, were compared. The area has a large variation of soil formation factors. The maps were drawn independently by four soil scientists and compared with a fifth map obtained by a digital soil mapping technique. All pedologists were given the same set of information. As many field expeditions and soil pits as required by each surveyor were provided to define the mapping units (MUs). For the Digital Soil Map (DSM), spectral data were extracted from Landsat 5 Thematic Mapper (TM) imagery as well as six terrain attributes from the topographic map of the area. These data were summarized by principal component analysis to generate the map designs of groups through Fuzzy K-means clustering. Field observations were made to identify the soils in the MUs and classify them according to the Brazilian Soil Classification System (BSCS). To compare the conventional and digital (DSM) soil maps, they were crossed pairwise to generate confusion matrices that were mapped. The categorical analysis at each classification level of the BSCS showed that the agreement between the maps decreased towards the lower levels of classification and the great influence of the surveyor on both the mapping and definition of MUs in the soil map. The average correspondence between the conventional and DSM maps was similar. Therefore, the method used to obtain the DSM yielded similar results to those obtained by the conventional technique, while providing additional information about the landscape of each soil, useful for applications in future surveys of similar areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil information is needed for managing the agricultural environment. The aim of this study was to apply artificial neural networks (ANNs) for the prediction of soil classes using orbital remote sensing products, terrain attributes derived from a digital elevation model and local geology information as data sources. This approach to digital soil mapping was evaluated in an area with a high degree of lithologic diversity in the Serra do Mar. The neural network simulator used in this study was JavaNNS and the backpropagation learning algorithm. For soil class prediction, different combinations of the selected discriminant variables were tested: elevation, declivity, aspect, curvature, curvature plan, curvature profile, topographic index, solar radiation, LS topographic factor, local geology information, and clay mineral indices, iron oxides and the normalized difference vegetation index (NDVI) derived from an image of a Landsat-7 Enhanced Thematic Mapper Plus (ETM+) sensor. With the tested sets, best results were obtained when all discriminant variables were associated with geological information (overall accuracy 93.2 - 95.6 %, Kappa index 0.924 - 0.951, for set 13). Excluding the variable profile curvature (set 12), overall accuracy ranged from 93.9 to 95.4 % and the Kappa index from 0.932 to 0.948. The maps based on the neural network classifier were consistent and similar to conventional soil maps drawn for the study area, although with more spatial details. The results show the potential of ANNs for soil class prediction in mountainous areas with lithological diversity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT In recent years, geotechnologies as remote and proximal sensing and attributes derived from digital terrain elevation models indicated to be very useful for the description of soil variability. However, these information sources are rarely used together. Therefore, a methodology for assessing and specialize soil classes using the information obtained from remote/proximal sensing, GIS and technical knowledge has been applied and evaluated. Two areas of study, in the State of São Paulo, Brazil, totaling approximately 28.000 ha were used for this work. First, in an area (area 1), conventional pedological mapping was done and from the soil classes found patterns were obtained with the following information: a) spectral information (forms of features and absorption intensity of spectral curves with 350 wavelengths -2,500 nm) of soil samples collected at specific points in the area (according to each soil type); b) obtaining equations for determining chemical and physical properties of the soil from the relationship between the results obtained in the laboratory by the conventional method, the levels of chemical and physical attributes with the spectral data; c) supervised classification of Landsat TM 5 images, in order to detect changes in the size of the soil particles (soil texture); d) relationship between classes relief soils and attributes. Subsequently, the obtained patterns were applied in area 2 obtain pedological classification of soils, but in GIS (ArcGIS). Finally, we developed a conventional pedological mapping in area 2 to which was compared with a digital map, ie the one obtained only with pre certain standards. The proposed methodology had a 79 % accuracy in the first categorical level of Soil Classification System, 60 % accuracy in the second category level and became less useful in the categorical level 3 (37 % accuracy).