936 resultados para RESONANCE
Measurement of k(892)*0 resonance production in p-pb collisions with the alice experiment at the lhc
Resumo:
̀ qui presentato lo studio della produzione della risonanza K∗0 in collisioni p-Pb con l’esperimento ALICE presso LHC. L’elaborato si compone di una introduzione sulla natura del fenomeno studiato: la formazione del Quark Gluon Plasma (QGP), uno stato della materia fortemente interagente ad alte temperatura e densità d’energia. Vengono descritte le segnature studiate ai fini di identificare il suddetto fenomeno, riportando come esempio concreto i risultati sperimentali. Successivamente l’acceleratore di particelle, LHC, e l’esperimento, ALICE, vengono brevemente introdotti. Più in dettaglio ven- gono descritti i rivelatori di ALICE effettivamente usati per l’analisi, a cui sono dedicate sezioni approfondite. Viene infine introdotta l’analisi e le sue motivazioni. Il metodo utilizzato e lo studio degli errori da associare alla misura sono illustrati in ogni loro passo e supportati dai risultati ottenuti. La discussione finale dei risultati include il confronto con i risultati preceden- temente ottenuti da ALICE in collisioni pp e Pb-Pb e da altri esperimenti.
Resumo:
Advanced optical biosensor platforms exploiting long range surface plasmons (LRSPs) and responsive N-isopropylacrylamide (NIPAAm) hydrogel binding matrix for the detection of protein and bacterial pathogen analytes were carried out. LRSPs are optical waves that originate from coupling of surface plasmons on the opposite sites of a thin metallic film embedded between two dielectrics with similar refractive indices. LRSPs exhibit orders of magnitude lower damping and more extended profile of field compared to regular surface plasmons (SPs). Their excitation is accompanied with narrow resonance and provides stronger enhancement of electromagnetic field intensity that can advance the sensitivity of surface plasmon resonance (SPR) and surface plasmon-enhanced fluorescence spectroscopy (SPFS) biosensors. Firstly, we investigated thin gold layers deposited on fluoropolymer surface for the excitation of LRSPs. The study indicates that the morphological, optical and electrical properties of gold film can be changed by the surface energy of fluoropolymer and affect the performance of a SPFS biosensor. A photo-crosslinkable NIPAAm hydrogel was grafted to the sensor surface in order to serve as a binding matrix. It was modified with bio-recognition elements (BREs) via amine coupling chemistry and offered the advantage of large binding capacity, stimuli responsive properties and good biocompatibility. Through experimental observations supported by numerical simulations describing diffusion mass transfer and affinity binding of target molecules in the hydrogel, the hydrogel binding matrix thickness, concentration of BREs and the profile of the probing evanescent field was optimized. Hydrogel with a up to micrometer thickness was shown to support additional hydrogel optical waveguide (HOW) mode which was employed for probing affinity binding events in the gel by means of refractometric and fluorescence measurements. These schemes allow to reach limits of detection (LODs) at picomolar and femtomolar levels, respectively. Besides hydrogel based experiments for detection of molecular analytes, long range surface plasmon-enhanced fluorescence spectroscopy (LRSP-FS) was employed for detection of bacterial pathogens. The influence of capture efficiency of bacteria on surfaces and the profile of the probing field on sensor response were investigated. The potential of LRSP-FS with extended evanescent field is demonstrated for detection of pathogenic E. coli O157:H7 on sandwich immunoassays . LOD as low as 6 cfu mL-1 with a detection time of 40 minutes was achieved.rn
Resumo:
The membrane protein Cytochrome c Oxidase (CcO) is one of the most important functional bio-molecules. It appears in almost every eukaryotic cell and many bacteria. Although the different species differ in the number of subunits, the functional differences are merely marginal. CcO is the terminal link in the electron transfer pathway of the mitochondrial respiratory chain. Electrons transferred to the catalytic center of the enzyme conduce to the reduction of molecular oxygen to water. Oxygen reduction is coupled to the pumping of protons into the inter-membrane space and hence generates a difference in electrochemical potential of protons across the inner mitochondrial membrane. This potential difference drives the synthesis of adenosine triphosphate (ATP), which is the universal energy carrier within all biological cells. rnrnThe goal of the present work is to contribute to a better understanding of the functional mechanism of CcO by using time-resolved surface enhanced resonance Raman spectroscopy (TR-SERRS). Despite intensive research effort within the last decades, the functional mechanism of CcO is still subject to controversial discussions. It was the primary goal of this dissertation to initiate electron transfer to the redox centers CuA, heme a, heme a3 and CuB electrochemically and to observe the corresponding redox transitions in-situ with a focus on the two heme structures by using SERRS. A measuring cell was developed, which allowed combination of electrochemical excitation with Raman spectroscopy for the purpose of performing the accordant measurements. Cytochrome c was used as a benchmark system to test the new measuring cell and to prove the feasibility of appropriate Raman measurements. In contrast to CcO the heme protein cc contains only a single heme structure. Nevertheless, characteristic Raman bands of the hemes can be observed for both proteins.rnrnIn order to investigate CcO it was immobilized on top of a silver substrate and embedded into an artificial membrane. The catalytic activity of CcO and therefore the complete functional capability of the enzyme within the biomimetic membrane architecture was verified using cyclic voltammetry. Raman spectroscopy was performed using a special nano-structured silver surface, which was developed within the scope of the present work. This new substrate combined two fundamental properties. It facilitated the formation of a protein tethered bilayer lipid membrane (ptBLM) and it allowed obtaining Raman spectra with sufficient high signal-to-noise ratios.rnSpectro-electrochemical investigations showed that at open circuit potential the enzyme exists in a mixed-valence state, with heme a and and heme a3 in the reduced and oxidized state, respectively. This was considered as an intermediate state between the non-activated and the fully activated state of CcO. Time-resolved SERRS measurements revealed that a hampered electron transfer to the redox center heme a3 characterizes this intermediate state.rn
Resumo:
Gleno-humeral joint (GHJ) is the most mobile joint of the human body. This is related to theincongr uence between the large humeral head articulating with the much smaller glenoid (ratio 3:1). The GHJ laxity is the ability of the humeral head to be passively translated on the glenoid fossa and, when physiological, it guarantees the normal range of motion of the joint. Three-dimensional GHJ linear displacements have been measured, both in vivo and in vitro by means of different instrumental techniques. In vivo gleno-humeral displacements have been assessed by means of stereophotogrammetry, electromagnetic tracking sensors, and bio-imaging techniques. Both stereophotogrammetric systems and electromagnetic tracking devices, due to the deformation of the soft tissues surrounding the bones, are not capable to accurately assess small displacements, such as gleno-humeral joint translations. The bio-imaging techniques can ensure for an accurate joint kinematic (linear and angular displacement) description, but, due to the radiation exposure, most of these techniques, such as computer tomography or fluoroscopy, are invasive for patients. Among the bioimaging techniques, an alternative which could provide an acceptable level of accuracy and that is innocuous for patients is represented by magnetic resonance imaging (MRI). Unfortunately, only few studies have been conducted for three-dimensional analysis and very limited data is available in situations where preset loads are being applied. The general aim of this doctoral thesis is to develop a non-invasive methodology based on open-MRI for in-vivo evaluation of the gleno-humeral translation components in healthy subjects under the application of external loads.
Resumo:
Nel presente lavoro di tesi magistrale sono stati depositati e caratterizzati sottili film di ossido di alluminio, Al2O3, (di spessore compreso tra 3-30 nm) su un substrato di FZ-Si drogato p. La deposizione è avvenuta mediante plasma ALD (Atomic Layer Depostion). La tecnica spettroscopica EPR (Electron Paramagnetic Resonance) è stata utilizzata per studiare l’interfaccia Si/Al2O3 con lo scopo di scoprire l’origine della formazione di densità di carica negativa Qf all’interfaccia: tale carica negativa induce una passivazione per effetto di campo ed è quindi la ragione per cui il dielettrico Al2O3 risulta essere un ottimo materiale passivante. Si è deciso di variare alcuni parametri, come lo spessore dello strato di Al2O3, lo spessore dello strato intermedio di ossido di silicio, depositato mediante ossidazione termica (dry thermal oxidation), e la superficie del substrato di silicio. Sono stati realizzati cinque differenti gruppi di campioni: per ciascuno di essi sono state impiegate varie tecniche di caratterizzazione, come la QSSPC (Quasi Steady State Photoconuctance) e la tecnica di spettroscopia ottica SE (spettroscopic ellipsometry). Per ogni gruppo sono stati riportati gli spettri EPR ottenuti ed i rispettivi fit, da cui è stato possibile risalire ai fattori giromagnetici di spin g, riportati in tabelle con le loro possibili attribuzioni. E’ stato dimostrato che la presenza di uno strato di ossido di silicio tra il substrato di silicio e lo strato di ossido di alluminio risulta essere fondamentale per la formazione di densità di carica negativa all’interfaccia: aumentando lo spessore dello strato di SiOx (nel range 1-30 nm) si assiste ad una diminuzione di carica negativa Qf. Analizzando gli spettri EPR, è stato possibile concludere che all’interfaccia Si/Al2O3 sono presenti difetti caratteristici dell’interfaccia Si/SiOx. Le nostre osservazioni, dunque, sono coerenti con la formazione di uno strato di ossido di silicio tra Si e Al2O3.
Resumo:
The last half-century has seen a continuing population and consumption growth, increasing the competition for land, water and energy. The solution can be found in the new sustainability theories, such as the industrial symbiosis and the zero waste objective. Reducing, reusing and recycling are challenges that the whole world have to consider. This is especially important for organic waste, whose reusing gives interesting results in terms of energy release. Before reusing, organic waste needs a deeper characterization. The non-destructive and non-invasive features of both Nuclear Magnetic Resonance (NMR) relaxometry and imaging (MRI) make them optimal candidates to reach such characterization. In this research, NMR techniques demonstrated to be innovative technologies, but an important work on the hardware and software of the NMR LAGIRN laboratory was initially done, creating new experimental procedures to analyse organic waste samples. The first results came from soil-organic matter interactions. Remediated soils properties were described in function of the organic carbon content, proving the importance of limiting the addition of further organic matter to not inhibit soil processes as nutrients transport. Moreover NMR relaxation times and the signal amplitude of a compost sample, over time, showed that the organic matter degradation of compost is a complex process that involves a number of degradation kinetics, as a function of the mix of waste. Local degradation processes were studied with enhanced quantitative relaxation technique that combines NMR and MRI. The development of this research has finally led to the study of waste before it becomes waste. Since a lot of food is lost when it is still edible, new NMR experiments studied the efficiency of conservation and valorisation processes: apple dehydration, meat preservation and bio-oils production. All these results proved the readiness of NMR for quality controls on a huge kind of organic residues and waste.