958 resultados para REGULATORY CELLS
Resumo:
Primary murine fetal hemopoietic cells were transformed with a fusion protein consisting of the ligand-binding domain of the estrogen receptor and a carboxyl-terminally truncated c-Myb protein (ERMYB), The ERMYB-transformed hemopoietic cells exhibit an immature myeloid phenotype when grown in the presence of beta-estradiol. Upon removal of beta-estradiol, the ERMYB cells display increased adherence, decreased clonogenicity and differentiate to cells exhibiting granulocyte or macrophage morphology, The expression of the c-myc, c-kit, cdc2 and bcl-2 genes, which are putatively regulated by Myb, was investigated in ERMYB cells grown in the presence or absence of beta-estradiol. Neither c-myc nor cdc2 expression was down-regulated after removal of beta-estradiol demonstrating that differentiation is not a consequence of decreased transactivation of these genes by ERMYB. While bcl-2 expression was reduced by 50% in ERMYB cells grown in the absence of beta-estradiol, there was no increase in DNA laddering, suggesting that Myb was not protecting ERMYB cells from apoptosis, In contrast, a substantial (200-fold) decrease in c-kit mRNA level was observed following differentiation of ERMYB cells, and c-kit mRNA could be partially re-induced by the re-addition of beta-estradiol. Furthermore, a reporter construct containing the c-kit promoter was activated when cotransfected with a Myb expression vector, providing further evidence of a role for Myb in the regulation of c-kit.
Resumo:
The ability of mesenchymal stem cells to generate functional neurons in culture is still a matter of controversy. In order to assess this issue, we performed a functional comparison between neuronal differentiation of human MSCs and fetal-derived neural stem cells (NSCs) based on morphological, immunocytochemical, and electrophysiological criteria. Furthermore, possible biochemical mechanisms involved in this process were presented. NF200 immunostaining was used to quantify the yield of differentiated cells after exposure to CAMP. The addition of a PKA inhibitor and Ca(2+) blockers to the differentiation medium significantly reduced the yield of differentiated cells. Activation of CREB was also observed on MSCs during maturation. Na(+)-, K(+)-, and Ca(2+)-voltage-dependent currents were recorded from MSCs-derived cells. In contrast, significantly larger Na(+) currents, firing activity, and spontaneous synaptic currents were recorded from NSCs. Our results indicate that the initial neuronal differentiation of MSCs is induced by CAMP and seems to be dependent upon Ca(2+) and the PKA pathway. However, compared to fetal neural stem cells, adult mesenchymal counterparts are limited in their neurogenic potential. Despite the similar yield of neuronal cells, NSCs achieved a more mature functional state. Description of the underlying mechanisms that govern MSCs` differentiation toward a stable neuronal phenotype and their limitations provides a unique opportunity to enhance our understanding of stem cell plasticity. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Neuron-glia interaction is involved in physiological function of neurons, however, recent evidences have suggested glial cells as participants in neurotoxic and neurotrophic mechanisms of neurodegenerative/neuroregenerative processes. Laser microdissection offers a unique opportunity to study molecular regulation in specific immunolabeled cell types. However, an adequate protocol to allow morphological and molecular analysis of rodent spinal cord astrocyte, microglia and motoneurons remains a big challenge. In this paper we present a quick method to immunolabel those cells in flash frozen sections to be used in molecular biology analyses after laser microdissection and pressure catapulting.
Resumo:
Neuropeptide Y (NPY) is an important neuromodulator found in central and peripheral neurons. NPY was investigated in the peripheral auditory pathway of conventional housed rats and after nontraumatic sound stimulation in order to localize the molecule and also to describe its response to sound stimulus. Rats from the stimulation experiment were housed in monitored sound-proofed rooms. Stimulated animals received sound stimuli (pure tone bursts of 8 kHz, 50 ms duration presented at a rate of 2 per second) at an intensity of 80 dB sound pressure level for 1 hr per day during 7 days. After euthanizing, rat cochleae were processed for one-color immunohistochemistry. The NPY immunoreactivity was detected in inner hair cells (IHC) and also in pillar and Deiters` cells of organ of Corti, and in the spiral ganglion putative type I (1,009 m3) and type II (225 m3) neurons. Outer hair cells (OHC) showed light immunoreaction product. Quantitative microdensitometry showed strong and moderate immunoreactions in IHC and spiral ganglion neurons, respectively, without differences among cochlear turns. One week of acoustic stimulation was not able to induce changes in the NPY immunoreactivity intensity in the IHC of cochlea. However, stimulated rats showed an overall increase in the number of putative type I and type II NPY immunoreactive spiral ganglion neurons with strong, moderate, and weak immunolabeling. Localization and responses of NPY to acoustic stimulus suggest an involvement of the neuropeptide in the neuromodulation of afferent transmission in the rat peripheral auditory pathway.
Trypan blue staining for capsulorhexis: Ultrastructural effect on lens epithelial cells and capsules
Resumo:
PURPOSE: To evaluate the ultrastructural effect of trypan blue 0.1% staining for capsulorhexis on lens epithelial cells (LECs) and capsules SETTING: Division of Ophthalmology. University of Sao Paulo, Sao Paulo, Brazil METHODS: Before capsulorhexis, patients were randomly assigned to 1 of 2 groups Trypan blue 0 1% staining was performed in the treatment group No trypan blue was used in the control group Samples of capsules with LECs were fixed and analyzed with routine optical microscopy techniques. immunohistochemistry for beclin-1 expression (a marker of autophagy), terminal deoxynucleotidyl transf erase-mediated dUTP-biotin nick-end labeling to detect apoptosis, and transmission electron microscopy (TEM) Morphometric analyses were performed. and the 2 sets of data were compared. RESULTS: Each group comprised 15 patients Cell death by autophagy and apoptosis was observed in the treatment group but not in the control group The TEM images of subcapsular epithelium cells showed mitochondria` rupture, dilation of the cisterns of the endoplasmic reticulum, increased cytoplasmic and nuclear electron density, and abnormalities in the nuclear profile of trypan blue-stained cells. Morphometric analysis showed statistically significant differences between the 2 groups in the longest nuclear axes and the ratio between the total nuclear perimeter and the cell area (P = .03) The difference in capsule thickness between groups was not significant. CONCLUSION: Trypan blue caused LEC death, which supports the hypothesis that staining with trypan blue 0 1% can help reduce the incidence of posterior capsule pacification after cataract surgery
Resumo:
The human endometrium is a dynamic tissue that undergoes cycles of growth and regression with each menstrual cycle. Adult progenitor stem cells are likely responsible for this remarkable regenerative capacity; these same progenitor stem cells may also have an enhanced capacity to generate endometriosis if shed in a retrograde fashion. The progenitor stem cells reside in the uterus; however, less-committed mesenchymal stem cells may also travel from other tissues such as bone marrow to repopulate the progenitor population. Mesenchymal stem cells are also involved in the pathogenesis of endometriosis and may be the principle source of endometriosis outside of the peritoneal cavity when they differentiate into endometriosis in ectopic locations. Finally, besides progenitor stem cells, recent publications have identified multipotent stem cells in the endometrium. These multipotent stem cells are a readily available source of cells that are useful in tissue engineering and regenerative medicine. Endometrial stem cells have been used to generate chondrocytes, myocytes, neurons, and adiposites in vitro as well as to replace dopaminergic neurons in a murine model of Parkinson`s disease.
Resumo:
Study design: A prospective, non-randomized clinical series trial. Objective: To evaluate the effect of autogenous undifferentiated stem cell infusion for the treatment of patients with chronic spinal cord injury (SCI) on somatosensory evoked potentials (SSEPs). Setting: A public tertiary hospital in Sao Paulo, Brazil. Methods: Thirty-nine consecutive patients with diagnosed complete cervical and thoracic SCI for at least 2 years and with no cortical response in the SSEP study of the lower limbs were included in the trial. The trial patients underwent peripheral blood stem cell mobilization and collection. The stem cell concentrate was cryopreserved and reinfused through arteriography into the donor patient. The patients were followed up for 2.5 years and submitted to SSEP studies to evaluate the improvement in SSEPs after undifferentiated cell infusion. Results: Twenty-six (66.7%) patients showed recovery of somatosensory evoked response to peripheral stimuli after 2.5 years of follow-up. Conclusion: The 2.5-year trial protocol proved to be safe and improved SSEPs in patients with complete SCI. Sponsorship: None. Spinal Cord (2009) 47, 733-738; doi: 10.1038/sc.2009.24; published online 31 March 2009
Resumo:
The Leishmune (R) vaccine has been used in endemic areas to prevent canine visceral leishmaniasis in Brazil, but cytokine production induced by vaccination has rarely been investigated in dogs. This study aimed to evaluate the immune response of dogs vaccinated with Leishmune FML vaccine (Fort Dodge) against total antigen of Leishmania (Leishmania) chagasi (TAg) and FML. Twenty healthy dogs from Aracatuba, Sao Paulo, Brazil, an endemic leishmaniasis area, received three consecutive subcutaneous injection of Leishmune vaccine at 21-day intervals. PBMC were isolated before and 10 days after completing vaccination and lymphoproliferative response and antibody production against FML or total promastigote antigen were tested. Cytokines IFN-gamma, IL-4 and TNF-alpha were measured in culture supernatant and CD4+/CD25+ and CD8+/CD25+ T cell presence was determined. Analysis of the data indicated that the vaccine conferred humoral responses (100%) against both antigens and cellular immunity to FML (85%) and total antigen (80%), the supernatant of cultured cells stimulated with TAg and FML showed an increase in IFN-gamma (P < 0.05), and the vaccine reduced CD4+/CD25+ T cell presence compared to that observed before vaccination. These responses may constitute part of the immune mechanism induced by Leishmune. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Rheumatoid arthritis (RA) is an autoimmune disorder characterized by chronic joint inflammation and continuous immune cell infiltration in the synovium. These changes are linked to inflammatory cytokine release, leading to eventual destruction of cartilage and bone. During the last decade new therapeutic modalities have improved the prognosis, with the introduction of novel biological response modifiers including anti-TNF alpha CTLA4Ig and, more recently, anti-IL6. In the present study we looked at the immunological effects of these three forms of therapy. Serum, obtained from patients with RA was analyzed for TNF alpha, IL6, IL10, IFN gamma, and VEGF, and in parallel, circulating plasmacytoid and myeloid dendritic cells (DC) were enumerated before and after three infusions of the respective biological treatments. After treatment with anti-IL6, we found a significant reduction of IL6 and TNF alpha levels and the percentage of both DC subsets decreased. Although the results did not reach statistical significance for anti-TNF alpha treatment, similar trends were observed. Meanwhile, CTLA4Ig therapy led to the reduction IFN gamma levels only. None of the treatments modified significantly VEGF or IL10 levels. These findings may explain why patients with RA improve more rapidly on IL-6 therapy than with the other two modalities.
Resumo:
Introduction Associations between systemic lupus erythematosus (SLE) and primary immunodeficiencies (PIDs) were analyzed to gain insight into the physiopathology of SLE. Some PIDs have been consistently associated with SLE or lupus-like manifestations: (a) homozygous deficiencies of the early components of the classical complement pathway in the following decreasing order: in C1q, 93% of affected patients developed SLE; in C4, 75%; in C1r/s, 57%; and in C2, up to 25%; (b) female carriers of X-linked chronic granulomatous disease allele; and (c) IgA deficiency, present in around 5% of juvenile SLE. Discussion In the first two groups, disturbances of cellular waste-disposal have been proposed as the main mechanisms of pathogenesis. On the other hand and very interestingly, there are PIDs systematically associated with several autoimmune manifestations in which SLE has not been described, such as autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED), immunedys-regulation polyendocrinopathy enteropathy X-linked (IPEX), and autoinumme lymphoproliferative syndrome (ALPS), suggesting that mechanisms considered as critical players for induction and maintenance of tolerance to autoantigens, such as (1) AME-mediated thymic negative selection of lymphocytes, (2) Foxp3+ regulatory T cell-mediated peripheral tolerance, and (3) deletion of auto-reactive lymphocytes by Fas-mediated apoptosis, could not be relevant in SLE physiopathology. The non-description of SLE and neither the most characteristic SLE clinical features among patients with agammaglobulinemia are also interesting observations, which reinforce the essential role of B lymphocytes and antibodies for SLE pathogenesis. Conclusion Therefore, monogenic PIDs represent unique and not fully explored human models for unraveling components of the conundrum represented by the physiopathology of SLE, a prototypical polygenic disease.
Resumo:
Background Primary Immunodeficiencies (PIDs) represent unique opportunities to understand the operation of the human immune system. Accordingly, PIDs associated with autoimmune manifestations provide insights into the pathophysiology of autoimmunity as well as into the genetics of autoimmune diseases (AID). Epidemiological data show that there are PIDs systematically associated with AID, such as immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX), Omenn syndrome, autoinunune polyendocrinopathy-candidiasis-ectodertnal dystrophy (APECED), autoinumine lymphoproliferative syndrome (ALPS), and C1q deficiency, while strong associations are seen with a handful of other deficits. Conclusion We interpret such stringent disease associations, together with a wealth of observations in experimental systems, as indicating first of all that natural tolerance to body components is an active, dominant process involving many of the components that ensure responsiveness, rather than, as previously believed, the result of the mere purge of autoreactivities. More precisely, it seems that deficits of Treg cell development, functions, numbers, and T cell receptor repertoire are among the main factors for autoimmunity pathogenesis in many (if not all) PIDs most frequently presenting with autoimmune features. Clearly, other pathophysiological mechanisms are also involved in autoimmunity, but these seem less critical in the process of self-tolerance. Comparing the clinical picture of IPEX cases with those, much less severe, of ALPS or APECED, provides some assessment of the relative importance of each set of mechanisms.
Resumo:
IPEX syndrome is a congenital disorder of immune regulation caused by mutations in the FOXP3 gene, which is required for the suppressive function of naturally arising CD4 + CD25 + regulatory T cells. In this case series we evaluated serum samples from 12 patients with IPEX syndrome for the presence of common autoantibodies associated with a broad range of autoimmune disorders. We note that 75% of patients (9/12) had 1 or more autoantibodies, an incidence far above the cumulative rate observed in the general population. The range of autoantibodies differed between patients and there was no predominant autoantibody or pattern of autoantibodies present in this cohort. Surprisingly, one patient had high-titer anti-mitochondrial antibodies (AMA) typically associated with primary biliary cirrhosis (PBC) although the patient had no signs of cholestasis. PBC is a well-characterized autoimmune disease that occurs primarily in women and includes the serological hallmarks of serum AMA and elevated IgM which were both present in this patient. PBC is virtually absent in children with the exception of one reported child with interleukin 2 receptor a (CD25) deficiency which is associated with an IPEX-like regulatory T cell dysfunction. Based on the present data and the available literature we suggest a direct role for CD4 + CD25 + regulatory T cells in restraining B cell autoantibody production and that defects in regulatory T cells may be crucial to the development of PBC. (C) 2010 Elsevier Ltd. All rights reserved.