999 resultados para RAT HIPPOCAMPAL SLICES
Resumo:
The present study was performed to investigate the possibility of 'aberrant' innervation of the tips of the hindlimb digits in the rat, i.e., from other sources than the femoral and the main sciatic branches (tibial, peroneal, sural). Cutaneous injections of fluorescent tracers in the digits were combined with either selective nerve transections to restrict afferent routes followed by detection of labeled neurons in dorsal root ganglia (DRGs), or by a delayed application of a second tracer to afferent nerves under study to detect double labeled neurons in DRGs. The results show that the tips of the digits were represented in DRGs L3-6. The femoral nerve afferents from digits 1 and 2 projected primarily to DRG L3 and to a smaller extent to DRG L4. A small number of neurons from primarily medial digits 1 and 2, but also from lateral digits 3-5, were found to project to DRGs L4 and L5 via a proximal branch that leaves the sciatic nerve near the sciatic notch and runs distally in the posterior part of the thigh, here called the musculocutaneous nerve of the hindlimb. We also have some evidence indicating innervation of the tips of the digits from the posterior cutaneous nerve of the thigh. Aberrant innervation such as that described here might contribute to remaining and perhaps abnormal sensibility after nerve injury and is of interest for the interpretation of results in experimental studies of collateral and regenerative sprouting after such injury
Resumo:
Previous studies in young rats reported the impact of cocoa intake on healthy immune status and allow suggesting it may have a role in the prevention of some immune-mediated diseases. The aim of this study was to ascertain the effect of a cocoa diet in a model of allergy in young rats. Three-week-old Brown Norway rats were immunized by i.p. injection of ovalbumin (OVA) with alum as adjuvant and Bordetella pertussis toxin. During the next 4 weeks rats received either a cocoa diet (containing 0.2% polyphenols, w/w) or a standard diet. Animals fed a standard diet showed high concentrations of anti-OVA IgG1, IgG2a, IgG2b and high anti-OVA IgE titres, which is the antibody involved in allergic response. In contrast, animals fed a cocoa diet showed significantly lower concentrations of anti-OVA IgG1 and IgG2a antibodies. Interestingly, the cocoa diet prevented anti-OVA IgE synthesis and decreased total serum IgE concentration. Analysis of cytokine production in lymph node cells at the end of the study revealed that, in this compartment, the cocoa diet decreased the tumor necrosis factor (TNF) - alpha and the interleukin (IL) -10 secretion but not IL-4 production. In conclusion, a cocoa-enriched diet in young rats produces an immunomodulatory effect that prevents anti-allergen IgE synthesis, suggesting a potential role for cocoa flavonoids in the prevention or treatment of allergic diseases.
Resumo:
Epidermal growth factor (EGF) and insulin induced similar effects in isolated rat adipocytes. To determine whether EGF and insulin produced similar effects through the same mechanisms, we focused on lipolysis. Insulin inhibited the lipolysis stimulated by isoproterenol, glucagon (either alone or in combination with adenosine deaminase), adenosine deaminase itself, or forskolin. In contrast, EGF did not inhibit the lipolysis stimulated by forskolin or by hormones when the cells were also incubated with adenosine deaminase. The effect of insulin, but not that of EGF, on isoproterenol-stimulated lipolysis disappeared when adipocytes were incubated with 1 microM wortmannin. These results indicate that EGF and insulin affected lipolysis through different mechanisms. We observed that EGF, but not insulin, increased cytosolic Ca2+. The effect of EGF, but not that of insulin, disappeared when the cells were incubated in a Ca2+-free medium. We suggest that EGF, but not insulin, mediate its antilipolytic effect through a Ca2+-dependent mechanism which, however, do not involve Ca2+-activated protein kinase C isoforms. This is based on the following: 1) phorbol 12-myristate 13-acetate affected lipolysis in an opposite way to that of EGF; and 2) the protein kinase C inhibitor bisindolylmaleimide GF 109203X did not affect the antilipolytic action of EGF. Our results indicate that the antilipolytic effect of EGF resembles more that of vasopressin than that of insulin.
Resumo:
The topographical distribution of sciatic and femoral nerve sensory neuronal somata in the L4 dorsal root ganglion of the adult rat was mapped after retrograde tracing with one or two of the dyes Fast Blue, Fluoro-Gold, or Diamidino Yellow. The tracers were applied to the proximal transected end of either nerve alone, or from both nerves in the same animal using separate tracers. Three-dimensional reconstructions of the distribution of labelled neurones were made from serial sections of the L4 dorsal root ganglion which is the only ganglion that these two nerves share. The results showed that with little overlap, femoral nerve neurones distribute dorsally and rostrally whereas sciatic nerve neurones distribute medially and ventrally. This finding indicates the existence of a somatotopical organisation for the representation of different peripheral nerves in dorsal root ganglia of adult animals.
Resumo:
The ascending midbrain 5-HT neurons to the forebrain may be dysregulated in depression and have a reduced trophic support. With in situ proximity ligation assay (PLA) and supported by coimmunoprecipitation and colocation of the FGFR1 and 5-HT1A immunoreactivities in the midbrain raphe cells, evidence for the existence of FGFR1-5-HT1A receptor heterocomplexes in the dorsal and median raphe nuclei of the Sprague Dawley rat as well as in the rat medullary raphe RN33B cells has been obtained. Especially after combined FGF-2 and 8-OH-DPAT treatment, a marked and significant increase in PLA clusters was found in the RN33B cells. Similar results were reached with the FRET technique in HEK293T cells, where TM-V of the 5HT1A receptor was found to be part of the receptor interface. The combined treatment with FGF-2 and the 5-HT1A agonist also synergistically increased FGFR1 and ERK1/2 phosphorylation in the raphe midline area of the midbrain and the RN33B cells as well as their differentiation, as seen from development of the increased number and length of extensions per cell and their increased 5-HT immunoreactivity. These signaling and differentiation events were dependent on the receptor interface since they were blocked by incubation with TM-V but not by TM-II. Together, the results indicate that the 5-HT1A autoreceptors by being part of a FGFR1-5-HT1A receptor heterocomplex in the midbrain raphe 5-HT nerve cells appear to have a trophic role in the central 5-HT neuron systems in addition to playing a key role in reducing the firing of these neurons
Resumo:
We have identified and characterized a spontaneous Brown Norway from Janvier rat strain (BN-J) presenting a progressive retinal degeneration associated with early retinal telangiectasia, neuronal alterations, and loss of retinal Müller glial cells resembling human macular telangiectasia type 2 (MacTel 2), which is a retinal disease of unknown cause. Genetic analyses showed that the BN-J phenotype results from an autosomal recessive indel novel mutation in the Crb1 gene, causing dislocalization of the protein from the retinal Müller glia (RMG)/photoreceptor cell junction. The transcriptomic analyses of primary RMG cultures allowed identification of the dysregulated pathways in BN-J rats compared with wild-type BN rats. Among those pathways, TGF-β and Kit Receptor Signaling, MAPK Cascade, Growth Factors and Inflammatory Pathways, G-Protein Signaling Pathways, Regulation of Actin Cytoskeleton, and Cardiovascular Signaling were found. Potential molecular targets linking RMG/photoreceptor interaction with the development of retinal telangiectasia are identified. This model can help us to better understand the physiopathologic mechanisms of MacTel 2 and other retinal diseases associated with telangiectasia.
Resumo:
Aging is associated with increased inflammation and reduced hippocampal neurogenesis, which may in turn contribute to cognitive impairment. Taurine is a free amino acid found in numerous diets, with anti-inflammatory properties. Although abundant in the young brain, the decrease in taurine concentration with age may underlie reduced neurogenesis. Here, we assessed the effect of taurine on hippocampal neurogenesis in middle-aged mice. We found that taurine increased cell proliferation in the dentate gyrus through the activation of quiescent stem cells, resulting in increased number of stem cells and intermediate neural progenitors. Taurine had a direct effect on stem/progenitor cells proliferation, as observed in vitro, and also reduced activated microglia. Furthermore, taurine increased the survival of newborn neurons, resulting in a net increase in adult neurogenesis. Together, these results show that taurine increases several steps of adult neurogenesis and support a beneficial role of taurine on hippocampal neurogenesis in the context of brain aging.
Resumo:
Thereis now growing evidencethatthe hippocampus generatestheta rhythmsthat can phase biasfast neural oscillationsinthe neocortex, allowing coordination of widespread fast oscillatory populations outside limbic areas. A recent magnetoencephalographic study showed that maintenance of configural-relational scene information in a delayed match-to-sample (DMS) task was associated with replay of that information during the delay period. The periodicity of the replay was coordinated by the phase of the ongoing theta rhythm, and the degree of theta coordination during the delay period was positively correlated with DMS performance. Here, we reanalyzed these data to investigate which brain regions were involved in generating the theta oscillations that coordinated the periodic replay of configural- relational information. We used a beamformer algorithm to produce estimates of regional theta rhythms and constructed volumetric images of the phase-locking between the local theta cycle and the instances of replay (in the 13- 80 Hz band). We found that individual differences in DMS performancefor configural-relational associations were relatedtothe degree of phase coupling of instances of cortical reactivations to theta oscillations generated in the right posterior hippocampus and the right inferior frontal gyrus. This demonstrates that the timing of memory reactivations in humans is biased toward hippocampal theta phase