942 resultados para RARE EARTH ELEMENTS
Resumo:
The trace element compositions of Hadean zircons have been used in two ways to argue for the existence of Hadean continental crust. One argument is based on low crystallization temperatures of Hadean zircons that have been determined using a novel geothermometer based on the Ti content of zircons in equilibrium with rutile. The second argument is based on using the trace element abundances in zircons to calculate their parental melt compositions, especially the rare earth elements. Here we demonstrate that zircons that grow from a melt formed by basalt differentiation at modern mid-ocean ridges cannot be unambiguously distinguished from Hadean zircons on either of these grounds. Thus, we conclude that the trace element compositions of Hadean zircons are permissive of models that do not include the generation of continental crust in the Hadean.
Resumo:
A comprehensive (mineralogical, geochronological, and geochemical) study of zircons from an eclogitized gabbronorite dike was carried out in order to identify reliable indicators (mineralogical and geochronological) of genesis of the zircons in their various populations and, correspondingly, ages of certain geological events (magmatic crystallization of the gabbroids, their eclogitization, and overprinted retrograde metamorphism). Three populations of zircons separated from two rock samples comprised xenogenic, magmatic (gabbroic), and metamorphic zircons, with the latter found exclusively in the sample of retrograded eclogitized gabbroids. Group I zircons are xenogenic and have a Meso- to Neoarchean age. Mineral inclusions in them (quartz, apatite, biotite, and chlorite) are atypical of gabbroids, and geochemistry of these zircons is very diverse. Group II zircons contain mineral inclusions of ortho- and clinopyroxene and are distinguished for their very high U, Th, Pb, and REE concentrations and Th/U ratios. These zircons formed during the late magmatic crystallization of the gabbroids at temperatures of 1150-1160°C, and their U-Pb age 2389±25 Ma corresponds to this process. Eclogite mineral assemblages crystallized shortly after the magmatic process, as follows from the fact that marginal portions of prismatic zircons contain clinopyroxene inclusions with elevated contents of the jadeite end-member. Group III zircons contain rare amphibole and biotite inclusions and have low Ti, Y, and REE concentrations, low Th/U ratios, high Hf concentrations, contain more HREE than LREE, and have U-Pb age 1911±9.5 Ma, which corresponds to age of overprinted amphibolite-facies metamorphism.
Resumo:
Analytical challenges in obtaining high quality measurements of rare earth elements (REEs) from small pore fluid volumes have limited the application of REEs as deep fluid geochemical tracers. Using a recently developed analytical technique, we analyzed REEs from pore fluids collected from Sites U1325 and U1329, drilled on the northern Cascadia margin during the Integrated Ocean Drilling Program (IODP) Expedition 311, to investigate the REE behavior during diagenesis and their utility as tracers of deep fluid migration. These sites were selected because they represent contrasting settings on an accretionary margin: a ponded basin at the toe of the margin, and the landward Tofino Basin near the shelf's edge. REE concentrations of pore fluid in the methanogenic zone at Sites U1325 and U1329 correlate positively with concentrations of dissolved organic carbon (DOC) and alkalinity. Fractionations across the REE series are driven by preferential complexation of the heavy REEs. Simultaneous enrichment of diagenetic indicators (DOC and alkalinity) and of REEs (in particular the heavy elements Ho to Lu), suggests that the heavy REEs are released during particulate organic carbon (POC) degradation and are subsequently chelated by DOC. REE concentrations are greater at Site U1325, a site where shorter residence times of POC in sulfate-bearing redox zones may enhance REE burial efficiency within sulfidic and methanogenic sediment zones where REE release ensues. Cross-plots of La concentrations versus Cl, Li and Sr delineate a distinct field for the deep fluids (z > 75 mbsf) at Site U1329, and indicate the presence of a fluid not observed at the other sites drilled on the Cascadia margin. Changes in REE patterns, the presence of a positive Eu anomaly, and other available geochemical data for this site suggest a complex hydrology and possible interaction with the igneous Crescent Terrane, located east of the drilled transect.
Resumo:
New data on microstructures and mineral and chemical compositions of ferromanganese crusts sampled from the western slope of the Kuril Island Arc in the Sea of Okhotsk during cruises of R/V Vulkanolog are discussed. The study of the crusts using analytical electron microscopy methods revealed that their manganese phase is represented by vernadite, Fe-vernadite, todorokite, asbolane, and asbolane-buserite, while iron phase consists of hematite, hydrohematite, ferroxyhite, and magnetite. Lithic mineral assemblage includes apatite, quartz, epidote, and montmorillonite. According to chemical analysis most of the crusts contain significant part of volcanogenic and hydrothermal material. It is evident from elevated values of Mn/Fe and (Mn+Fe)/Ti ratios, low concentrations of some trace elements, and positive Eu anomaly.
Resumo:
Research of the ocean floor using the Mir submersibles carried out south of the Hawaiian Archipelago allowed to recover flows of recent picrite basalts. Lava vents are confined to a field of development of open fractures of a gjar type. Basalts represent initial lava flows in the structure of the Hawaiian volcanic archipelago. Considering contents of alkali and rare-earth elements in them, the picrite basalts of the bottom could be assigned to a series of island tholeiites. They are products of high level melting of asthenospheric matter at depth about 75-80 km as a result of decompression near a deep fracture that occurred in the lithosphere and asthenosphere. Similar picrite basalts were found in the base of the youngest volcano of the Hawaiian chain the Loihi Volcano. With respect to contents of alkali metals, these rocks are assigned to the subalkaline series of rocks formed during melting of garnet lherzolites. This could probably be explained by supply of melts from deeper levels of the asthenosphere after partial packing of an initial magma effluent fracture.
Resumo:
Volcaniclastic sediments of North Aoba Basin (Vanuatu) recovered during Ocean Drilling Program (ODP) Leg 134 show a mineralogical and chemical overprint of low grade hydrothermal alteration superimposed on the primary magmatic source compositions. The purpose of this study was to identify authigenic mineral phases incorporated in the volcaniclastic sediments, to distinguish authigenic chemical and mineralogical signals from the original volcaniclastic mineralogical and chemical compositions, and to determine the mechanism of authigenic minerals formation. Mineralogical, micro-chemical and bulk chemical analyses were utilized to identify and characterize authigenic phases and determine the original unaltered ash compositions. 117 volcaniclastic sediment samples from North Aoba Basin Sites 832 and 833 were analyzed. Primary volcaniclastic materials accumulated in North Aoba Basin can be divided into three types. The older basin-filling sequences show three different magmatic trends: high K, calc-alkaline, and low K series. The most recent accumulations are rhyodacitic composition and can be attributed to Santa Maria or Aoba volcanic emissions. Original depositional porosity of volcaniclastic sediments is an important factor in influencing distribution of authigenic phases. Finer-grained units are less altered and retain a bulk mineralogical and chemical composition close to the original pyroclastic rock composition. Coarser grained units (microbreccia and sandstones) are the major hosts of authigenic minerals. At both sites, authigenic minerals (including zeolites, clay minerals, Mg-carbonates, and quartz) exhibit complex zonation with depth that crosses original ash depositional boundaries and stratigraphic limits. The zeolite minerals phillipsite and analcime are ubiquitous throughout the altered intervals. At Site 832, the first zeolite minerals (phillipsite) occur in Pleistocene deposits as shallow as 146 meters below seafloor (mbsf). At Site 833 the first zeolite minerals (analcime) occur in Pleistocene deposits as shallow as 224 mbsf. The assemblage phillipsite + analcime + chabazite appears at 635 mbsf (Site 832) and at 376 mbsf (Site 833). Phillipsite + analcime + chabazite + thomsonite + heulandite are observed between 443 and 732 mbsf at Site 833. Thomsonite is no longer observed below 732 mbsf at Site 833. Heulandite is present to the base of the sections cored. The zeolite assemblages are associated with authigenic clay minerals (nontronite and saponite), calcite, and quartz. Chlorite is noticeable at Site 832 as deep as 851 mbsf. Zeolite zones are present but are less well defined at Site 832. Dolomite and rare magnesite are present below 940 m at Site 832. The coarse-grained authigenic mineral host intervals exhibit geochemical signatures that can be attributed to low grade hydrothermal alteration. The altered intervals show evidence of K2O, CaO, and rare earth elements mobilization. When compared to fine-grained, unaltered units, and to Santa Maria Island volcanics rocks, the altered zones are relatively depleted in rare earth elements, with light rare earth elements-heavy rare earth elements fractionation. Drilling at Site 833 penetrated a sill complex below 840 m. No sill was encountered at Site 832. Complex zonation of zeolite facies, authigenic smectites, carbonates and quartz, and associated geochemical signatures are present at both sites. The mineralogical and chemical alteration overprint is most pronounced in the deeper sections at Site 832. Based on mineralogical and chemical evidence at two locations less than 50 km apart, there is vertical and lateral variation in alteration of the volcaniclastic sediments of North Aoba Basin. The alteration observed may be activated by sill intrusion and associated expulsion of heated fluids into intervals of greater porosity. Such spatial variation in alteration could be attributed to the evolution of the basin axis associated with subduction processes along the New Hebrides Trench.
Resumo:
Red-brown dolomitic claystones overlay the Marsili Basin basaltic basement at ODP Site 650. Sequential leaching experiments reveal that most of the elements considered to have a hydrothermal or hydrogenous origin in a marine environment, such as Fe, Cu, Zn, Pb, Co, Ni, are present mainly in the aluminosilicate fraction of the dolomitic claystones. Their vertical distribution, content and partitioning chemistry of trace elements, and REE patterns suggest enhanced terrigenous input during dolomite formation, but no significant hydrothermal influence from the underlying basaltic basement. Positive correlations in the C and O isotopes in the dolomites reflect complex conditions during the dolomitization. The stable isotopes can be controlled in part by temperature variations during the dolomitization. Majority of the samples, however, form a trend that is steeper than expected for only temperature control on the C and O isotopes. The latter indicates possible isotopic heterogeneity in the proto-carbonate that can be related to arid climatic conditions during the formation of the basal dolomitic claystones. In addition, the dolostones stable isotopic characteristics can be influenced by diagenetic release of heavier delta18O from clay dehydration and/or alteration of siliciclastic material. Strontium and Pb isotopic data reveal that the non-carbonate fraction, the "dye" of the dolomitic claystones, is controlled by Saharan dust (75%-80%) and by material with isotopic characteristics similar to the Aeolian Arc volcanoes (20%-25%). The non-carbonate fraction of the calcareous ooze overlying the dolomitic claystones has a Sr and Pb isotopic composition identical to that of the dolomitic claystones, indicating that no change in the input sources to the sedimentary basin occurred during and after the dolomitization event. Combination of climato-tectonic factors most probably resulted in suitable conditions for dolomitization in the Marsili and the nearby Vavilov Basins. The basal dolomitic claystone sequence was formed at the initiation of the opening of the Marsili Basin (~2 Ma), which coincided with the consecutive glacial stage. The glaciation caused arid climate and enhanced evaporation that possibly contributed to the stable isotope variations in the proto-carbonate. The conductive cooling of the young lithosphere produced high heat flow in the region, causing low-temperature passive convection of pore waters in the basal calcareous sediment. We suggest that this pumping process was the major dolomitization mechanism since it is capable of driving large volumes of seawater (the source of Mg2+) through the sediment. The red-brown hue of the dolomitic claystones is terrigenous contribution of the glacially induced high eolian influx and was not hydrothermally derived from the underlying basaltic basement. The detailed geochemical investigation of the basal dolomitic sequence indicates that the dolomitization was most probably related to complex tectono-climatic conditions set by the initial opening stages of the Marsili Basin and glaciation.
Resumo:
Alteration products of basalts from the four holes drilled during Leg 81 were studied and found to be characterized by the widespread occurrence of trioctahedral clay minerals (Mg smectite to chlorite). In some cases zeolites (analcite, chabazite) are associated with the saponite. A more oxidizing stage is marked by a saponite-celadonite association, presenting the geochemical characteristics of hydrothermal processes. Later stages of alteration are represented by palagonitization and subaerial weathering at two sites. These different alteration processes of basalts from Leg 81 record the paleoenvironment during the first opening stages of the Northeast Atlantic Ocean in the Paleocene-Eocene periods.
Resumo:
Behavior of rare earth elements (REE) was examined in oceanic phillipsites collected from four horizons of eupelagic clay in the Southwest Basin of the Pacific Ocean. REE concentrations were determined in >50 ?m size fraction phillipsite samples by the ICP-MS method. Composition of separate phillipsite aggregates was studied by electron microprobe and secondary ion mass-spectrometry. Rare earth elements in phillipsite samples are related to admixture of ferrocalcium hydroxophosphates. Analysis of separate phillipsite aggregates reveals low (<0.1-18.1 ppm) REE(III) concentrations. Ce concentration varies between 2.7 and 140 ppm. The correlation analysis shows that REE(III) present in admixture of iron oxyhydroxides in separate phillipsite aggregates. Based on the REE(III) concentration in iron oxyhydroxides we can identify two generations of phillipsite aggregates. Massive rounded aggregates (phillipsite I) are depleted in REE, while pseudorhombic (phillipsite II) aggregates are enriched in REE and marked by a positive Ce anomaly. Oceanic phillipsites do not accumulate REE or inherit the REE signature of volcaniclastic material and oceanic deep water. Hence, REE distribution in phillipsites does not depend on sedimentation rate and composition of host sediments.
Resumo:
Leg 61 of the Deep Sea Drilling Project (DSDP) was concerned with drilling a single continuously cored multiple re-entry hole at site 462 in the Central Nauru Basin (Fig. 1). Preliminary results of this drilling, which penetrated more than 1 km beneath the sea floor, were presented earlier. One major result was the discovery of a late Cretaceous off-ridge volcanic/intrusive complex of basaltic composition and great thickness (>500 m). We now present trace element abundance data for these basalts. Results of the drilling provide further support for a relatively long-lived thermal and magmatic event in the late Cretaceous resulting in voluminous and widespread magmatism in the central and western Pacific consistent with earlier suggestions. The trace element data show that most of the rocks produced during this event have trace element characteristics intermediate between those of normal and transitional mid-ocean ridge basalts (N- and T-type MORB) and different from Hawaiian basalts. These results indicate that basalts which are depleted in light rare earth elements (LREE) relative to the heavy REE may, in certain conditions, be erupted as voluminous intra-plate eruptions far from active ridge crests.
Resumo:
The paper is based on new results of melt inclusion studies in minerals. Physicochemical and geochemical parameters of plateau basalt magmatic systems of the Siberian Platform and Ontong Java Plateau (Pacific Ocean) have been established. The studied melts are enriched in Fe. That differs them from magmatic melts of mid-ocean ridges (MOR). A comparative analysis of data on inclusions has shown a similarity of continental and oceanic plateau basalt magmatic systems. They considerably differ from those of MOR and intraplate oceanic islands. Crystallization of oceanic plateau basalts took place at lower temperatures and pressures as compared with similar rocks of the Siberian Platform. The data on inclusions evidence that the melts of the Siberian Platform and the Malaita Island underwent a serious evolution in contrast to magmas of the Nauru Basin that have more stable geochemical parameters. The most fractionated low-temperature high-Fe magmas with elevated contents of trace and rare-earth elements occur in the Malaita Island (Ontong Java Plateau) magmatic system.