995 resultados para Quantum Interference


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A spin-injection/-detection device has been fabricated based on the multiple quantum well light emitting diode (LED) structure. It is found that only a broad electroluminescence (EL) peak of a full width at half maximum of 8.6 nm appears at the wavelength of 801 nm in EL spectra with a circular luminescence polarization degree of 18%, despite PL spectra always show three well resolved peaks. The kinetic energy gained by injected electrons and holes in their drift along opposite directions broadens the EL peak, and makes three EL peaks converge together. The same process also destroys the injected spin polarization of electrons mainly dominated by the Bir-Aronov-Pikus spin relaxing mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using effective-mass Hamiltonian model of semiconductors quantum well structures, we investigate the electronic structures of the Gamma-conduction and L-conduction subbands of GeSn/GeSiSn strained quantum well structure with an arbitrary composition. Our theoretical model suggests that the band structure could be widely modified to be type I, negative-gap or indirect-gap type II quantum well by changing the mole fraction of alpha-Sn and Si in the well and barrier layers, respectively. The optical gain spectrum in the type I quantum well system is calculated, taking into account the electrons leakage from the Gamma-valley to L-valley of the conduction band. We found that by increasing the mole fraction of alpha-Sn in the barrier layer and not in the well layer, an increase in the tensile strain effect can significantly enhance the transition probability, and a decrease in Si composition in the barrier layer, which lowers the band edge of Gamma-conduction subbands, also comes to a larger optical gain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of well thickness on the electroluminescence (EL) of InGaN/GaN multiple quantum wells (MQWs) grown by metalorganic chemical vapor deposition is investigated. It is found that the peak wavelength of EL increases with the increase of well thickness when the latter is located in the range of 3.0-5.1 nm. The redshift is mainly attributed to the quantum confined Stark effect (QCSE). As a contrast, it is found that the EL intensity of InGaN/GaN MQWs increases with the increase of well thickness in spite of QCSE. The result of X-ray diffraction demonstrates that the interface become smoother with the increase of well thickness and suggests that the reduced interface roughness can be an important factor leading to the increase of EL intensity of InGaN/GaN MQWs. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using self-consistent calculations of million-atom Schrodinger-Poisson equations, we investigate the I-V characteristics of tunnelling and ballistic transport of nanometer metal oxide semiconductor field effect transistors (MOSFET) based on a full 3-D quantum mechanical simulation under nonequilibtium condition. Atomistic empirical pseudopotentials are used to describe the device Hamiltonian and the underlying bulk band structure. We find that the ballistic transport dominates the I-V characteristics, whereas the effects of tunnelling cannot be neglected with the maximal value up to 0.8mA/mu m when the channel length of MOSFET scales down to 25 nm. The effects of tunnelling transport lower the threshold voltage V-t. The ballistic current based on fully 3-D quantum mechanical simulation is relatively large and has small on-off ratio compared with results derived from the calculation methods of Luo et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the transfer matrix renormalization group (TMRG) method, we study the connection between the first derivative of the thermal average of driving-term Hamiltonian (DTADH) and the trace of quantum critical behaviors at finite temperatures. Connecting with the exact diagonalization method, we give the phase diagrams and analyze the properties of each phase for both the ferromagnetic and anti-ferromagnetic frustrated J(3) anisotropy diamond chain models. The finite-temperature scaling behaviors near the critical regions are also investigated. Further, we show the critical behaviors driven by external magnetic field, analyze the formation of the 1/3 magnetic plateau and the influence of different interactions on those critical points for both the ferrimagnetic and anti-ferromagnetic distorted diamond chains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By using photoluminescence (PL) and time-resolved PL spectra, the optical properties of single InAs quantum dot (QD) embedded in the p-1-n structure have been studied under an applied electric field With the increasing of electric field, the exciton lifetime increases due to the Stark effect. We noticed that the decrease or quenching of PL intensity with increasing the electric field is mainly due to the decrease of the carriers captured by QD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a direct observation of excitonic polaron in InAs/GaAs quantum dots using the photoluminescence (PL) spectroscopy. We observe that a new peak s' emerges below the s-shell which has anomalous temperature dependence emission energy. The peak s' anticrosses with s at a certain temperature, with a large anticrossing gap up to 31 meV. The behavior of the new peak, which cannot be interpreted using Huang-Rhys model, provides a direct evidence for strong coupling between exciton and LO phonons, and the formation of the excitonic polaron. The strong coupling between exciton and phonons opens a way to coherently control the polaron states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate two-photon excited fluorescence from CdSe quantum dots with a center-emitting wavelength of 655 nm on SiN photonic crystals. We find that two-photon excited fluorescence is enhanced by more than 1 order of magnitude in the vertical direction when a photonic crystal is used compared to the fluorescence spectra in the absence of photonic crystals. The spectrum of two-photon excited fluorescence from quantum dots on SiN photonic crystal is observed to shift to blue compared to that from quantum dots on SiN without photonic crystals. (C) 2010 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The refractive nonlinearities of InAs/GaAs quantum dots under a dc electric field at photon energies above its band gap energy have been studied using the reflection Z-scan technique. The effect of the dc electric field on the nonlinear response of InAs/GaAs quantum dots showed similar linear and quadratic electro-optic effects as in the linear response regime at low fields. This implies that the electro-optic effect in the nonlinear regime is analogous to the response in the linear regime for semiconductor quantum dots. Our experimental results show the potential for voltage tunability in InAs quantum dot-based nonlinear electro-optic devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the design and fabrication of InAs quantum dot gated transistors, which are normally-on, where the channel current can be switched off by laser illumination. Laser light at 650 nm with a power of 850 pW switches the channel current from 5 mu A to 2 pA, resulting in an on/off ratio of more than 60 dB. The switch-off mechanism and carrier dynamics are analyzed with simulated band structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of the Coulomb interaction on the energy spectrum and anisotropic distribution of two electron states in a quantum ring in the presence of Rashba spin-orbit interaction (RSOI) and Dresselhaus SOI (DSOI) is investigated in the presence of a perpendicular magnetic field. We find that the interplay between the RSOI and DSOI makes the single quantum ring behaves like a laterally coupled quantum dot and the interdot coupling can be tuned by changing the strengths of the SOIs. The interplay can lead to singlet-triplet state mixing and anticrossing behavior when the singlet and triplet states meet with increasing magnetic field. The two electron ground state displays a bar-bell-like spatial anisotropic distribution in a quantum ring at a specific crystallographic direction, i.e., [110] or [1 (1) over bar0], which can be switched by reversing the direction of the perpendicular electric field. The ground state exhibits a singlet-triplet state transition with increasing magnetic field and strengths of RSOI and DSOI. An anisotropic electron distribution is predicted which can be detected through the measurement of its optical properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study quantum oscillations of the magnetization in Bi2Se3 (111) surface system in the presence of a perpendicular magnetic field. The combined spin-chiral Dirac cone and Landau quantization produce profound effects on the magnetization properties that are fundamentally different from those in the conventional semiconductor two-dimensional electron gas. In particular, we show that the oscillating center in the magnetization chooses to pick up positive or negative values depending on whether the zero-mode Landau level is occupied or empty. An intuitive analysis of these features is given and the subsequent effects on the magnetic susceptibility and Hall conductance are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate that a p-n junction created electrically in HgTe quantum wells with inverted band structure exhibits interesting intraband and interband tunneling processes. We find a perfect intraband transmission for electrons injected perpendicularly to the interface of the p-n junction. The opacity and transparency of electrons through the p-n junction can be tuned by changing the incidence angle, the Fermi energy and the strength of the Rashba spin-orbit interaction (RSOI). The occurrence of a conductance plateau due to the formation of topological edge states in a quasi-one-dimensional (Q1D) p-n junction can be switched on and off by tuning the gate voltage. The spin orientation can be substantially rotated when the samples exhibit a moderately strong RSOI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The gain recoveries in quantum dot semiconductor optical amplifiers (QD SOAs) are numerically studied by rate equation simulation. Similar to the optical pump-probe experiment, the injection of double 150 fs optical pulses is used to simulate the gain recovery of a weak continuous signal under different injection levels, inhomogeneous broadenings, detuning wavelengths, and pulse signal energies for the QD SOAs. The obtained gain recoveries are then fitted by a response function with multiple exponential terms to determine the response times. The gain recovery can be described by three exponential terms with the time constants, which can be explained as carrier relaxation from the excited state to the ground state, carrier captured by the excited state from the wetting layer, and the supply of the wetting layer carriers. The fitted lifetimes decrease with the increase of the injection currents under gain unsaturation, slightly decrease with the decrease of inhomogeneous broadening of QDs, and increase with the increase of detuning wavelength between continuous signal and pulse signal and the increase of the pulse energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photoluminescence (PL) intensity enhancement and suppression mechanism on surface plasmons (SPs) coupling with InGaN/GaN quantum wells (QWs) have been systematically studied. The SP-QW coupling behaviors in the areas of GaN cap layer coated with silver thin film were compared at different temperatures and excitation powers. It is found that the internal quantum efficiency (IQE) of the light emitting diodes (LEDs) varies with temperature and excitation power, which in turn results in anomalous emission enhancement and suppression tendency related to SP-QW coupling. The observation is explained by the balance between the extraction efficiency of SPs and the IQE of LEDs