935 resultados para Px-domain


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The posttranslational modification of eukaryotic intracellular proteins by O-linked N-acetylglucosamine (O-GlcNAc) monosaccharides is essential for cell viability, yet its precise functional roles are largely unknown. O-GlcNAc transferase utilizes UDP-GlcNAc, the end product of hexosamine biosynthesis, to catalyze this modification. The availability of UDP-GlcNAc correlates with glycosylation levels of intracellular proteins as well as with transcriptional levels of some genes. Meanwhile, transcription factors and RNA polymerase II can be modified by O-GlcNAc. A linkage between transcription factor O-GlcNAcylation and transcriptional regulation therefore has been postulated. Here, we show that O-GlcNAcylation of a chimeric transcriptional activator containing the second activation domain of Sp1 decreases its transcriptional activity both in an in vitro transcription system and in living cells, which is in concert with our observation that O-GlcNAcylation of Sp1 activation domain blocks its in vitro and in vivo interactions with other Sp1 molecules and TATA-binding protein-associated factor II 110. Furthermore, overexpression of O-GlcNAc transferase specifically inhibits transcriptional activation by native Sp1 in cells. Thus, our studies provide direct evidence that O-GlcNAcylation of transcription factors is involved in transcriptional regulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

cDNA fragments encoding the carboxyltransferase domain of the multidomain plastid acetyl-CoA carboxylase (ACCase) from herbicide-resistant maize and from herbicide-sensitive and herbicide-resistant Lolium rigidum were cloned and sequenced. A Leu residue was found in ACCases from herbicide-resistant plants at a position occupied by Ile in all ACCases from sensitive grasses studied so far. Leu is present at the equivalent position in herbicide-resistant ACCases from other eukaryotes. Chimeric ACCases containing a 1000-aa fragment of two ACCase isozymes found in a herbicide-resistant maize were expressed in a yeast ACC1 null mutant to test herbicide sensitivity of the enzyme in vivo and in vitro. One of the enzymes was resistant/tolerant, and one was sensitive to haloxyfop and sethoxydim, rendering the gene-replacement yeast strains resistant and sensitive to these compounds, respectively. The sensitive enzyme has an Ile residue, and the resistant one has a Leu residue at the putative herbicide-binding site. Additionally, a single Ile to Leu replacement at an equivalent position changes the wheat plastid ACCase from sensitive to resistant. The effect of the opposite substitution, Leu to Ile, makes Toxoplasma gondii apicoplast ACCase resistant to haloxyfop and clodinafop. In this case, inhibition of the carboxyltransferase activity of ACCase (second half-reaction) of a large fragment of the Toxoplasma enzyme expressed in Escherichia coli was tested. The critical amino acid residue is located close to a highly conserved motif of the carboxyltransferase domain, which is probably a part of the enzyme active site, providing the basis for the activity of fop and dim herbicides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate the molecular basis of the voltage sensor that triggers excitation–contraction (EC) coupling, the four-domain pore subunit of the dihydropyridine receptor (DHPR) was cut in the cytoplasmic linker between domains II and III. cDNAs for the I-II domain (α1S 1–670) and the III-IV domain (α1S 701-1873) were expressed in dysgenic α1S-null myotubes. Coexpression of the two fragments resulted in complete recovery of DHPR intramembrane charge movement and voltage-evoked Ca2+ transients. When fragments were expressed separately, EC coupling was not recovered. However, charge movement was detected in the I-II domain expressed alone. Compared with I-II and III-IV together, the charge movement in the I-II domain accounted for about half of the total charge (Qmax = 3 ± 0.23 vs. 5.4 ± 0.76 fC/pF, respectively), and the half-activation potential for charge movement was significantly more negative (V1/2 = 0.2 ± 3.5 vs. 22 ± 3.4 mV, respectively). Thus, interactions between the four internal domains of the pore subunit in the assembled DHPR profoundly affect the voltage dependence of intramembrane charge movement. We also tested a two-domain I-II construct of the neuronal α1A Ca2+ channel. The neuronal I-II domain recovered charge movements like those of the skeletal I-II domain but could not assist the skeletal III-IV domain in the recovery of EC coupling. The results demonstrate that a functional voltage sensor capable of triggering EC coupling in skeletal myotubes can be recovered by the expression of complementary fragments of the DHPR pore subunit. Furthermore, the intrinsic voltage-sensing properties of the α1A I-II domain suggest that this hemi-Ca2+ channel could be relevant to neuronal function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PAS domains are found in diverse proteins throughout all three kingdoms of life, where they apparently function in sensing and signal transduction. Although a wealth of useful sequence and functional information has become recently available, these data have not been integrated into a three-dimensional (3D) framework. The very early evolutionary development and diverse functions of PAS domains have made sequence analysis and modeling of this protein superfamily challenging. Limited sequence similarities between the ∼50-residue PAS repeats and one region of the bacterial blue-light photosensor photoactive yellow protein (PYP), for which ground-state and light-activated crystallographic structures have been determined to high resolution, originally were identified in sequence searches using consensus sequence probes from PAS-containing proteins. Here, we found that by changing a few residues particular to PYP function, the modified PYP sequence probe also could select PAS protein sequences. By mapping a typical ∼150-residue PAS domain sequence onto the entire crystallographic structure of PYP, we show that the PAS sequence similarities and differences are consistent with a shared 3D fold (the PAS/PYP module) with obvious potential for a ligand-binding cavity. Thus, PYP appears to prototypically exhibit all the major structural and functional features characteristic of the PAS domain superfamily: the shared PAS/PYP modular domain fold of ∼125–150 residues, a sensor function often linked to ligand or cofactor (chromophore) binding, and signal transduction capability governed by heterodimeric assembly (to the downstream partner of PYP). This 3D PAS/PYP module provides a structural model to guide experimental testing of hypotheses regarding ligand-binding, dimerization, and signal transduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Integrin receptors serve as mechanical links between the cell and its structural environment. Using αvβ3 integrin expressed in K562 cells as a model system, the process by which the mechanical connection between αvβ3 and vitronectin develops was analyzed by measuring the resistance of these bonds to mechanical separation. Three distinct stages of activation, as defined by increases in the αvβ3-vitronectin binding strength, were defined by mutational, biochemical, and biomechanical analyses. Activation to the low binding strength stage 1 occurs through interaction with the vitronectin ligand and leads to the phosphorylation of Y747 in the β3 subunit. Stage 2 is characterized by a 4-fold increase in binding strength and is dependent on stage1 and the phosphorylation of Y747. Stage 3 is characterized by a further 2.5-fold increase in binding strength and is dependent on stage 2 events and the availability of Y759 for interaction with cellular proteins. The Y747F mutant blocked the transition from stage 1 to stage 2, and the Y759F blocked the transition from stage 2 to stage 3. The data suggest a model for tension-induced activation of αvβ3 integrin.