936 resultados para Pulaski (Steam-packet)
Resumo:
Wavelets introduce new classes of basis functions for time-frequency signal analysis and have properties particularly suited to the transient components and discontinuities evident in power system disturbances. Wavelet analysis involves representing signals in terms of simpler, fixed building blocks at different scales and positions. This paper examines the analysis and subsequent compression properties of the discrete wavelet and wavelet packet transforms and evaluates both transforms using an actual power system disturbance from a digital fault recorder. The paper presents comparative compression results using the wavelet and discrete cosine transforms and examines the application of wavelet compression in power monitoring to mitigate against data communications overheads.
Resumo:
In quantum tunnelling, what appears to be an infinitely fast barrier traversal can be explained in terms of an Aharonov-like weak measurement of the tunnelling time, in which the role of the pointer is played by the particle's own coordinate. A relativistic wave packet is shown to be reshaped through a series of subluminal shifts which together produce an anomalous 'superluminal' result.
Resumo:
Dense deployment of wireless local area network (WLAN) access points (APs) is an important part of the next generation Wi-Fi and standardization (802.11ax) efforts are underway. Increasing demand for WLAN connectivity motivates such dense deployments, especially in geographical areas with large numbers of users, such as stadiums, large enterprises, multi-tenant buildings, and urban cities. Although densification of WLAN APs guarantees coverage, it is susceptible to increased interference and uncoordinated association of stations (STAs) to APs, which degrade network throughput. Therefore, to improve network throughput, algorithms are proposed in this thesis to optimally coordinate AP associations in the presence of interference. In essence, coordination of APs in dense WLANs (DWLANs) is achieved through coordination of STAs' associations with APs. While existing approaches suggest tuning of APs' beacon powers or using transmit power control (TPC) for association control, here, the signal-to-interference-plus-noise ratio (SINRs) of STAs and the clear channel assessment (CCA) threshold of the 802.11 MAC protocol are employed. The proposed algorithms in this thesis enhance throughput and minimize coverage holes inherent in cell breathing and TPC techniques by not altering the transmit powers of APs, which determine cell coverage. Besides uncoordinated AP associations, unnecessary frequent transmission deferment is envisaged as another problem in DWLANs due to the clear channel assessment aspect of the carrier sensing multiple access collision avoidance (CSMA/CA) scheme in 802.11 standards and the short spatial reuse distance between co-channel APs. To address this problem in addition to AP association coordination, an algorithm is proposed for CCA threshold adjustment in each AP cell, such that CCA threshold used in one cell mitigates transmission deferment in neighboring cells. Performance evaluation reveals that the proposed association optimization algorithms achieve significant gain in throughput when compared with the default strongest signal first (SSF) association scheme in the current 802.11 standard. Also, further gain in throughput is observed when the CCA threshold adjustment is combined with the optimized association. Results show that when STA-AP association is optimized and CCA threshold is adjusted in each cell, throughput improves. Finally, transmission delay and the number of packet re-transmissions due to collision and contention significantly decrease.
Resumo:
A coherent superposition of rotational states in D2 has been excited by nonresonant, ultrafast (12 fs), intense (2×1014 W cm-2) 800 nm laser pulses, leading to impulsive dynamic alignment. Field-free evolution of this rotational wave packet has been mapped to high temporal resolution by a time-delayed pulse, initiating rapid double ionization, which is highly sensitive to the angle of orientation of the molecular axis with respect to the polarization direction, . The detailed fractional revivals of the neutral D2 wave packet as a function of and evolution time have been observed and modeled theoretically.
Resumo:
This paper presents a new packet scheduling scheme called agent-based WFQ to control and maintain QoS parameters in virtual private networks (VPNs) within the confines of adaptive networks. Future networks are expected to be open heterogeneous environments consisting of more than one network operator. In this adaptive environment, agents act on behalf of users or third-party operators to obtain the best service for their clients and maintain those services through the modification of the scheduling scheme in routers and switches spanning the VPN. In agent-based WFQ, an agent on the router monitors the accumulated queuing delay for each service. In order to control and to keep the end-to-end delay within the bounds, the weights for services are adjusted dynamically by agents on the routers spanning the VPN. If there is an increase or decrease in queuing delay of a service, an agent on a downstream router informs the upstream routers to adjust the weights of their queues. This keeps the end-to-end delay of services within the specified bounds and offers better QoS compared to VPNs using static WFQ. This paper also describes the algorithm for agent-based WFQ, and presents simulation results. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
The comparison of three ionic liquid-mediated catalytic processes for the benzoylation of anisole with benzoic anhydride is presented. A detailed understanding of the mechanism by which the zeolite and metal triflate reactions in bis{trifluoromethanesulfonyl}imide-based ionic liquids has been reported previously, and these routes are considered together with an indium chloride-based ionic liquid system. Solvent extraction and vacuum/steam distillation have been assessed as possible workup procedures, and an overall preliminary economic evaluation of each overall process is reported. Although the predominant activity is associated with the in situ formation of a homogeneous acid catalyst, the low cost and facile separation of the zeolite-catalysed process leads to this route being the most economically viable overall option. The results of a continuous flow miniplant based on the zeolite catalyst are also presented and compared with the reaction using a small plug How reactor.