965 resultados para Price policy.
Resumo:
Research was done to assess the dissemination and implementation by the Fisheries Department, Local Govemments and beach management units and the awareness, acceptance and compliance among fishers to the CoM Directives on management of Lake Victoria fisheries. Conducted by the National Fisheries Resources Research Institute (NaFIRRI), the research focused on the implementation and effectiveness of measures following the LYFO Council of Ministers (CoM) Directives for improved management of the fisheries of Lake Victoria, with particular reference to the 2009 CoM Directives as a case study, it was established that many of the Directives have not been implemented. In cases where the directives were implemented, their effectiveness remains questionable. While steps were taken to disseminate and implement the Directives, there were some challenges, including the unclear legal status of the directives, limited dissemination materials and poor methods of dissemination, language barriers and inadequate resources for enforcement.
Resumo:
Modelling dialogue as a Partially Observable Markov Decision Process (POMDP) enables a dialogue policy robust to speech understanding errors to be learnt. However, a major challenge in POMDP policy learning is to maintain tractability, so the use of approximation is inevitable. We propose applying Gaussian Processes in Reinforcement learning of optimal POMDP dialogue policies, in order (1) to make the learning process faster and (2) to obtain an estimate of the uncertainty of the approximation. We first demonstrate the idea on a simple voice mail dialogue task and then apply this method to a real-world tourist information dialogue task. © 2010 Association for Computational Linguistics.
Resumo:
Statistical dialogue models have required a large number of dialogues to optimise the dialogue policy, relying on the use of a simulated user. This results in a mismatch between training and live conditions, and significant development costs for the simulator thereby mitigating many of the claimed benefits of such models. Recent work on Gaussian process reinforcement learning, has shown that learning can be substantially accelerated. This paper reports on an experiment to learn a policy for a real-world task directly from human interaction using rewards provided by users. It shows that a usable policy can be learnt in just a few hundred dialogues without needing a user simulator and, using a learning strategy that reduces the risk of taking bad actions. The paper also investigates adaptation behaviour when the system continues learning for several thousand dialogues and highlights the need for robustness to noisy rewards. © 2011 IEEE.
Resumo:
Material efficiency, as discussed in this Meeting Issue, entails the pursuit of the technical strategies, business models, consumer preferences and policy instruments that would lead to a substantial reduction in the production of high-volume energy-intensive materials required to deliver human well-being. This paper, which introduces a Discussion Meeting Issue on the topic of material efficiency, aims to give an overview of current thinking on the topic, spanning environmental, engineering, economics, sociology and policy issues. The motivations for material efficiency include reducing energy demand, reducing the emissions and other environmental impacts of industry, and increasing national resource security. There are many technical strategies that might bring it about, and these could mainly be implemented today if preferred by customers or producers. However, current economic structures favour the substitution of material for labour, and consumer preferences for material consumption appear to continue even beyond the point at which increased consumption provides any increase in well-being. Therefore, policy will be required to stimulate material efficiency. A theoretically ideal policy measure, such as a carbon price, would internalize the externality of emissions associated with material production, and thus motivate change directly. However, implementation of such a measure has proved elusive, and instead the adjustment of existing government purchasing policies or existing regulations-- for instance to do with building design, planning or vehicle standards--is likely to have a more immediate effect.
Resumo:
Innovation policies play an important role throughout the development process of emerging industries in China. Existing policy and industry studies view the emergence process as a black-box, and fail to understand the impacts of policy to the process along which it varies. This paper aims to develop a multi-dimensional roadmapping tool to better analyse the dynamics between policy and industrial growth for new industries in China. Through reviewing the emergence process of Chinese wind turbine industry, this paper elaborates how policy and other factors influence the emergence of this industry along this path. Further, this paper generalises some Chinese specifics for the policy-industry dynamics. As a practical output, this study proposes a roadmapping framework that generalises some patterns of policy-industry interactions for the emergence process of new industries in China. This paper will be of interest to policy makers, strategists, investors and industrial experts. Copyright © 2013 Inderscience Enterprises Ltd.
Resumo:
The partially observable Markov decision process (POMDP) has been proposed as a dialogue model that enables automatic improvement of the dialogue policy and robustness to speech understanding errors. It requires, however, a large number of dialogues to train the dialogue policy. Gaussian processes (GP) have recently been applied to POMDP dialogue management optimisation showing an ability to substantially increase the speed of learning. Here, we investigate this further using the Bayesian Update of Dialogue State dialogue manager. We show that it is possible to apply Gaussian processes directly to the belief state, removing the need for a parametric policy representation. In addition, the resulting policy learns significantly faster while maintaining operational performance. © 2012 IEEE.
Resumo:
In the face of increasing demand and limited emission reduction opportunities, the steel industry will have to look beyond its process emissions to bear its share of emission reduction targets. One option is to improve material efficiency - reducing the amount of metal required to meet services. In this context, the purpose of this paper is to explore why opportunities to improve material efficiency through upstream measures such as yield improvement and lightweighting might remain underexploited by industry. Established input-output techniques are applied to the GTAP 7 multi-regional input-output model to quantify the incentives for companies in key steel-using sectors (such as property developers and automotive companies) to seek opportunities to improve material efficiency in their upstream supply chains under different short-run carbon price scenarios. Because of the underlying assumptions, the incentives are interpreted as overestimates. The principal result of the paper is that these generous estimates of the incentives for material efficiency caused by a carbon price are offset by the disincentives to material efficiency caused by labour taxes. Reliance on a carbon price alone to deliver material efficiency would therefore be misguided and additional policy interventions to support material efficiency should be considered. © 2013 Elsevier B.V.
Resumo:
Recent years have seen enormous demand amongst policy makers for new insights from the behavioural sciences, especially neuroscience. This demand is matched by an increasing willingness on behalf of behavioural scientists to translate the policy implications of their work. But can neuroscience really help shape the governance of a nation? Or does this represent growing misuse of neuroscience to attach scientific authority to policy, plus a clutch of neuroscientists trying to overstate their findings for a taste of power?. © 2012.
Resumo:
OBJECTIVE: A standard view in health economics is that, although there is no market that determines the "prices" for health states, people can nonetheless associate health states with monetary values (or other scales, such as quality adjusted life year [QALYs] and disability adjusted life year [DALYs]). Such valuations can be used to shape health policy, and a major research challenge is to elicit such values from people; creating experimental "markets" for health states is a theoretically attractive way to address this. We explore the possibility that this framework may be fundamentally flawed-because there may not be any stable values to be revealed. Instead, perhaps people construct ad hoc values, influenced by contextual factors, such as the observed decisions of others. METHOD: The participants bid to buy relief from equally painful electrical shocks to the leg and arm in an experimental health market based on an interactive second-price auction. Thirty subjects were randomly assigned to two experimental conditions where the bids by "others" were manipulated to follow increasing or decreasing price trends for one, but not the other, pain. After the auction, a preference test asked the participants to choose which pain they prefer to experience for a longer duration. RESULTS: Players remained indifferent between the two pain-types throughout the auction. However, their bids were differentially attracted toward what others bid for each pain, with overbidding during decreasing prices and underbidding during increasing prices. CONCLUSION: Health preferences are dissociated from market prices, which are strongly referenced to others' choices. This suggests that the price of health care in a free-market has the capacity to become critically detached from people's underlying preferences.
Resumo:
Estimating the financial value of pain informs issues as diverse as the market price of analgesics, the cost-effectiveness of clinical treatments, compensation for injury, and the response to public hazards. Such valuations are assumed to reflect a stable trade-off between relief of discomfort and money. Here, using an auction-based health-market experiment, we show that the price people pay for relief of pain is strongly determined by the local context of the market, that is, by recent intensities of pain or immediately disposable income (but not overall wealth). The absence of a stable valuation metric suggests that the dynamic behavior of health markets is not predictable from the static behavior of individuals. We conclude that the results follow the dynamics of habit-formation models of economic theory, and thus, this study provides the first scientific basis for this type of preference modeling.