998 resultados para Preweaning growth
Resumo:
Long-run economic growth arouses a great interest since it can shed light on the income-path of an economy and try to explain the large differences in income we observe across countries and over time. The neoclassical model has been followed by several endogenous growth models which, contrarily to the former, seem to predict that economies with similar preferences and technological level, do not necessarily tend to converge to similar per capita income levels. This paper attempts to show a possible mechanismthrough which macroeconomic disequilibria and inefficiencies, represented by budget deficits, may hinder human capital accumulation and therefore economic growth. Using a mixed education system, deficit is characterized as a bug agent which may end up sharply reducing the resources devoted to education and training. The paper goes a step further from the literature on deficit by introducing a rich dynamic analysis of the effects of a deficit reduction on different economic aspects.Following a simple growth model and allowing for slight changes in the law of human capital accumulation, we reach a point where deficit might sharply reduce human capital accumulation. On the other hand, a deficit reduction carried on for a long time, taking that reduction as a more efficient management of the economy, may prove useful in inducing endogenous growth. Empirical evidence for a sample of countries seems to support the theoretical assumptions in the model: (1) evidence on an inverse relationship betweendeficit and human capital accumulation, (2) presence of a strongly negative associationbetween the quantity of deficit in the economy and the rate of growth. They may prove a certain role for budget deficit in economic growth
Resumo:
The aim of this paper is twofold. First, we study the determinants of economic growth among a wide set of potential variables for the Spanish provinces (NUTS3). Among others, we include various types of private, public and human capital in the group of growth factors. Also,we analyse whether Spanish provinces have converged in economic terms in recent decades. Thesecond objective is to obtain cross-section and panel data parameter estimates that are robustto model speci¯cation. For this purpose, we use a Bayesian Model Averaging (BMA) approach.Bayesian methodology constructs parameter estimates as a weighted average of linear regression estimates for every possible combination of included variables. The weight of each regression estimate is given by the posterior probability of each model.
Resumo:
In this paper, we study how public and private expenditures in health and education affect economic growth by their influence on people's health, abilities, skills and knowledge. We consider a growth accounting framework in order to test whether welfare expenditures more than offset the efficiency losses caused by distortionary taxation, and whether the effects of public expenditure on economic growth differ from those of private expenditure. Our empirical analysis is based on a panel of 19 OECD countries observed between 1971 and 1998. The results are consistent with the hypothesis that the contribution of welfare expenditures more than compensates for the distortions caused by the tax system; and the estimated positive impact is stronger for health than for education. We also find some evidence that public expenditure influences GDP growth more than private expenditure.
Resumo:
The self-assembled growth of GaN nanorods on Si (111) substrates by plasma-assisted molecular beam epitaxy under nitrogen-rich conditions is investigated. An amorphous silicon nitride layer is formed in the initial stage of growth that prevents the formation of a GaN wetting layer. The nucleation time was found to be strongly influenced by the substrate temperature and was more than 30 min for the applied growth conditions. The observed tapering and reduced length of silicon-doped nanorods is explained by enhanced nucleation on nonpolar facets and proves Ga-adatom diffusion on nanorod sidewalls as one contribution to the axial growth. The presence of Mg leads to an increased radial growth rate with a simultaneous decrease of the nanorod length and reduces the nucleation time for high Mg concentrations.
Resumo:
Inorganic phosphate (Pi) is one of the most limiting nutrients for plant growth in both natural and agricultural contexts. Pi-deficiency leads to a strong decrease in shoot growth, and triggers extensive changes at the developmental, biochemical and gene expression levels that are presumably aimed at improving the acquisition of this nutrient and sustaining growth. The Arabidopsis thaliana PHO1 gene has previously been shown to participate in the transport of Pi from roots to shoots, and the null pho1 mutant has all the hallmarks associated with shoot Pi deficiency. We show here that A. thaliana plants with a reduced expression of PHO1 in roots have shoot growth similar to Pi-sufficient plants, despite leaves being strongly Pi deficient. Furthermore, the gene expression profile normally triggered by Pi deficiency is suppressed in plants with low PHO1 expression. At comparable levels of shoot Pi supply, the wild type reduces shoot growth but maintains adequate shoot vacuolar Pi content, whereas the PHO1 underexpressor maintains maximal growth with strongly depleted Pi reserves. Expression of the Oryza sativa (rice) PHO1 ortholog in the pho1 null mutant also leads to plants that maintain normal growth and suppression of the Pi-deficiency response, despite the low shoot Pi. These data show that it is possible to unlink low shoot Pi content with the responses normally associated with Pi deficiency through the modulation of PHO1 expression or activity. These data also show that reduced shoot growth is not a direct consequence of Pi deficiency, but is more likely to be a result of extensive gene expression reprogramming triggered by Pi deficiency.
Resumo:
The microstructure of CuInS2-(CIS2) polycrystalline films deposited onto Mo-coated glass has been analyzed by Raman scattering, Auger electron spectroscopy (AES), transmission electron microscopy, and x-ray diffraction techniques. Samples were obtained by a coevaporation procedure that allows different Cu-to-In composition ratios (from Cu-rich to Cu-poor films). Films were grown at different temperatures between 370 and 520-°C. The combination of micro-Raman and AES techniques onto Ar+-sputtered samples has allowed us to identify the main secondary phases from Cu-poor films such as CuIn5S8 (at the central region of the layer) and MoS2 (at the CIS2/Mo interface). For Cu-rich films, secondary phases are CuS at the surface of as-grown layers and MoS2 at the CIS2/Mo interface. The lower intensity of the MoS2 modes from the Raman spectra measured at these samples suggests excess Cu to inhibit MoS2 interface formation. Decreasing the temperature of deposition to 420-°C leads to an inhibition in observing these secondary phases. This inhibition is also accompanied by a significant broadening and blueshift of the main A1 Raman mode from CIS2, as well as by an increase in the contribution of an additional mode at about 305 cm-1. The experimental data suggest that these effects are related to a decrease in structural quality of the CIS2 films obtained under low-temperature deposition conditions, which are likely connected to the inhibition in the measured spectra of secondary-phase vibrational modes.
Resumo:
Epitaxial films of the biferroic YMnO3 (YMO) oxide have been grown on platinum-coated SrTiO3(1 1 1) and Al2O3(0 0 0 1) substrates. The platinum electrodes, (1 1 1) oriented, are templates for the epitaxy of the hexagonal phase of YMO with a (0 0 0 1) out-of-plane orientation, which is of interest as this is the polarization direction of YMO. X-ray diffractometry indicates the presence of two crystal domains, 60° rotated in-plane, in the Pt(1 1 1) layers which subsequently are transferred on the upperlaying YMO. Cross-section analysis by high-resolution transmission electron microscopy (HRTEM) of YMnO3/Pt/SrTiO3(1 1 1) shows high-quality epitaxy and sharp interfaces across the structure in the observed region. We present a detailed study of the epitaxial growth of the hexagonal YMO on the electrodes.
Resumo:
We present our recent achievements in the growing and optical characterization of KYb(WO4)2 (hereafter KYbW) crystals and demonstrate laser operation in this stoichiometric material. Single crystals of KYbW with optimal crystalline quality have been grown by the top-seeded-solution growth slow-cooling method. The optical anisotropy of this monoclinic crystal has been characterized, locating the tensor of the optical indicatrix and measuring the dispersion of the principal values of the refractive indices as well as the thermo-optic coefficients. Sellmeier equations have been constructed valid in the visible and near-IR spectral range. Raman scattering has been used to determine the phonon energies of KYbW and a simple physical model is applied for classification of the lattice vibration modes. Spectroscopic studies (absorption and emission measurements at room and low temperature) have been carried out in the spectral region near 1 µm characteristic for the ytterbium transition. Energy positions of the Stark sublevels of the ground and the excited state manifolds have been determined and the vibronic substructure has been identified. The intrinsic lifetime of the upper laser level has been measured taking care to suppress the effect of reabsorption and the intrinsic quantum efficiency has been estimated. Lasing has been demonstrated near 1074 nm with 41% slope efficiency at room temperature using a 0.5 mm thin plate of KYbW. This laser material holds great promise for diode pumped high-power lasers, thin disk and waveguide designs as well as for ultrashort (ps/fs) pulse laser systems.
Resumo:
We obtained Ba3Yb(BO3)3 single crystals by the flux method with solutions of the BaB2O4Na2OYb2O3 system. The evolution of the cell parameters with temperature shows a slope change at temperatures near 873 K, which may indicate a phase transition that is not observed by changes appearing in the x-ray powder patterns or by differential thermal analysis (DTA). The evolution of the diffraction patterns with the temperature shows incongruent melting at temperatures higher than 1473 K. DTA indicates that there is incongruent melting and this process is irreversible. Ba3Yb(BO3)3 has a wide transparency window from 247 to 3900 nm. We recorded optical absorption and emission spectra at room and low temperature, and we determined the splitting of Yb3+ ions. We used the reciprocity method to calculate the maximum emission cross section of 0.28 10-20 cm2 at 966 nm. The calculated lifetime of Yb3+ in Ba3Yb(BO3)3 is trad = 2.62 ms, while the measured lifetime is t = 3.80 ms.
Resumo:
In the last decades, the use of plant growth-promoting rhizobacteria has become an alternative to improve crop production. Rhizobium leguminosarum biovar trifolii is one of the most promising rhizobacteria and is even used with non-legume plants. This study investigated in vitro the occurrence of plant growth-promoting characteristics in several indigenous R. leguminosarum biovar trifolii isolated from soils in the State of Rio Grande do Sul, Brazil. Isolates were obtained at 11 locations and evaluated for indoleacetic acid and siderophore production and inorganic phosphate solubilization. Ten isolates were also molecularly characterized and tested for antagonism against a phytopathogenic fungus and for plant growth promotion of rice seedlings. Of a total of 252 isolates, 59 produced indoleacetic acid, 20 produced siderophores and 107 solubilized phosphate. Some degree of antagonism against Verticillium sp. was observed in all tested isolates, reducing mycelial growth in culture broth. Isolate AGR-3 stood out for increasing root length of rice seedlings, while isolate ELD-18, besides increasing root length in comparison to the uninoculated control, also increased the germination speed index, shoot length, and seedling dry weight. These results confirm the potential of some strains of R. leguminosarum biovar trifolii as plant growth-promoting rhizobacteria.
Resumo:
Soil and fertilizer management during cultivation can affect crop productivity and profitability. Long-term experiments are therefore necessary to determine the dynamics of nutrient and root distribution as related to soil profile, as well as the effects on nutrient uptake and crop growth. An 18-year experiment was conducted at the Federal University of Rio Grande do Sul State (UFRGS), in Eldorado do Sul, Brazil, on Rhodic Paleudult soil. Black oat and vetch were planted in the winter and corn in the summer. The soil management methods were conventional, involving no-tillage and strip tillage techniques and broadcast, row-and strip-applied fertilizer placement (triple superphosphate). Available P (Mehlich-1) and root distribution were determined in soil monoliths during the corn grain filling period. Corn shoot dry matter production and P accumulation during the 2006/2007 growing season were determined and the efficiency of P utilization calculated. Regardless of the degree of soil mobilization, P and roots were accumulated in the fertilized zone with time, mainly in the surface layer (0-10 cm). Root distribution followed P distribution for all tillage systems and fertilizer treatments. Under no-tillage, independent of the fertilizer placement, the corn plants developed more roots than in the other tillage systems. Although soil tillage systems and fertilizer treatments affected P and root distribution throughout the soil profile, as well as P absorption and corn growth, the efficiency of P utilization was not affected.
Resumo:
Long-run economic growth arouses a great interest since it can shed light on the income-path of an economy and try to explain the large differences in income we observe across countries and over time. The neoclassical model has been followed by several endogenous growth models which, contrarily to the former, seem to predict that economies with similar preferences and technological level, do not necessarily tend to converge to similar per capita income levels. This paper attempts to show a possible mechanismthrough which macroeconomic disequilibria and inefficiencies, represented by budget deficits, may hinder human capital accumulation and therefore economic growth. Using a mixed education system, deficit is characterized as a bug agent which may end up sharply reducing the resources devoted to education and training. The paper goes a step further from the literature on deficit by introducing a rich dynamic analysis of the effects of a deficit reduction on different economic aspects.Following a simple growth model and allowing for slight changes in the law of human capital accumulation, we reach a point where deficit might sharply reduce human capital accumulation. On the other hand, a deficit reduction carried on for a long time, taking that reduction as a more efficient management of the economy, may prove useful in inducing endogenous growth. Empirical evidence for a sample of countries seems to support the theoretical assumptions in the model: (1) evidence on an inverse relationship betweendeficit and human capital accumulation, (2) presence of a strongly negative associationbetween the quantity of deficit in the economy and the rate of growth. They may prove a certain role for budget deficit in economic growth
Resumo:
In this paper we highlight the importance of the operational costs in explaining economic growth and analyze how the industrial structure affects the growth rate of the economy. If there is monopolistic competition only in an intermediate goods sector, then production growth coincides with consumption growth. Moreover, the pattern of growth depends on the particular form of the operational cost. If the monopolistically competitive sector is the final goods sector, then per capita production is constant but per capita effective consumption or welfare grows. Finally, we modify again the industrial structure of the economy and show an economy with two different growth speeds, one for production and another for effective consumption. Thus, both the operational cost and the particular structure of the sector that produces the final goods determines ultimately the pattern of growth.
Resumo:
Microtubule-associated protein 1B, MAP1B, is one of the major growth associated and cytoskeletal proteins in neuronal and glial cells. It is present as a full length protein or may be fragmented into a heavy chain and a light chain. It is essential to stabilize microtubules during the elongation of dendrites and neurites and is involved in the dynamics of morphological structures such as microtubules, microfilaments and growth cones. MAP1B function is modulated by phosphorylation and influences microtubule stability, microfilaments and growth cone motility. Considering its large size, several interactions with a variety of other proteins have been reported and there is increasing evidence that MAP1B plays a crucial role in the stability of the cytoskeleton and may have other cellular functions. Here we review molecular and functional aspects of this protein, evoke its role as a scaffold protein and have a look at several pathologies where the protein may be involved.