954 resultados para Presence-only data
Resumo:
UW access only. Questions about spatial data can be directed to uwlib-gis [at] uw [dot] edu, include the URI address below and any information you have.
Resumo:
UW access only. Questions about spatial data can be directed to uwlib-gis [at] uw [dot] edu, include the URI address below and any information you have.
Resumo:
Tese de doutoramento, Farmácia (Toxicologia), Universidade de Lisboa, Faculdade de Farmácia, 2016
Resumo:
Fusobacterium necrophorum is a causative agent of Lemierre’s syndrome (LS) in humans. LS is characterised by thrombophlebitis of the jugular vein and bacteraemia. Disseminated intravascular coagulation is also a documented symptom. F. necrophorum is a Gram-negative, anaerobic bacterium known to possess virulence genes such as a haemolysin, filamentous haemagglutinin and leukotoxin, which target host blood components. Ecotin is a serine protease inhibitor that has not previously been characterised in F. necrophorum, but in E.coli has been shown to have a potent anticoagulant effect. Next generation and Sanger sequencing were used to confirm the presence of the ecotin gene in the genomes of a collection of F. necrophorum clinical and reference strains. When translated, it was found to be a highly conserved protein made up of159 amino acids. Enzyme/substrate inhibition assays demonstrated that F. necrophorum ecotin inhibits human plasma kallikrein and human neutrophil elastase in a dose-dependent manner. Data will also be presented on the anticoagulant effects of ecotin during activated partial thromboplastin time, thrombin time and prothrombin time tests on human donor blood. The mechanisms for how this organism reaches the bloodstream and the significance of this serine protease inhibitor during F. necrophorum infections remain to be elucidated
Resumo:
We have developed an in-house pipeline for the processing and analyses of sequence data generated during Illumina technology-based metagenomic studies of the human gut microbiota. Each component of the pipeline has been selected following comparative analysis of available tools; however, the modular nature of software facilitates replacement of any individual component with an alternative should a better tool become available in due course. The pipeline consists of quality analysis and trimming followed by taxonomic filtering of sequence data allowing reads associated with samples to be binned according to whether they represent human, prokaryotic (bacterial/archaeal), viral, parasite, fungal or plant DNA. Viral, parasite, fungal and plant DNA can be assigned to species level on a presence/absence basis, allowing – for example – identification of dietary intake of plant-based foodstuffs and their derivatives. Prokaryotic DNA is subject to taxonomic and functional analyses, with assignment to taxonomic hierarchies (kingdom, class, order, family, genus, species, strain/subspecies) and abundance determination. After de novo assembly of sequence reads, genes within samples are predicted and used to build a non-redundant catalogue of genes. From this catalogue, per-sample gene abundance can be determined after normalization of data based on gene length. Functional annotation of genes is achieved through mapping of gene clusters against KEGG proteins, and InterProScan. The pipeline is undergoing validation using the human faecal metagenomic data of Qin et al. (2014, Nature 513, 59–64). Outputs from the pipeline allow development of tools for the integration of metagenomic and metabolomic data, moving metagenomic studies beyond determination of gene richness and representation towards microbial-metabolite mapping. There is scope to improve the outputs from viral, parasite, fungal and plant DNA analyses, depending on the depth of sequencing associated with samples. The pipeline can easily be adapted for the analyses of environmental and non-human animal samples, and for use with data generated via non-Illumina sequencing platforms.
Resumo:
Indoor localization systems in nowadays is a huge area of interest not only at academic but also at industry and commercial level. The correct location in these systems is strongly influenced by antennas performance which can provide several gains, bandwidths, polarizations and radiation patterns, due to large variety of antennas types and formats. This paper presents the design, manufacture and measurement of a compact microstrip antenna, for a 2.4 GHZ frequency band, enhanced with the use of Electromagnetic Band-Gap (EBG) structures, which improve the electromagnetic behavior of the conventional antennas. The microstrip antenna with an EBG structure integrated allows an improvement of the location system performance in about 25% to 30% relatively to a conventional microstrip antenna.
Resumo:
This paper presents the SmartClean tool. The purpose of this tool is to detect and correct the data quality problems (DQPs). Compared with existing tools, SmartClean has the following main advantage: the user does not need to specify the execution sequence of the data cleaning operations. For that, an execution sequence was developed. The problems are manipulated (i.e., detected and corrected) following that sequence. The sequence also supports the incremental execution of the operations. In this paper, the underlying architecture of the tool is presented and its components are described in detail. The tool's validity and, consequently, of the architecture is demonstrated through the presentation of a case study. Although SmartClean has cleaning capabilities in all other levels, in this paper are only described those related with the attribute value level.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Introdução: Estruturalmente, a marcha é modificada de acordo com as características de cada individuo, sua natureza morfológica, tipo de atividade, idade e a presença de determinadas doenças, entre outros fatores. Devidas as alterações fisiológicas de envelhecimento, o custo energético da marcha normal por si só é superior nos idosos comparativamente com os jovens. Objetivo: Analisar a influência do uso de andarilho com rodas e fixo nos parâmetros metabólicos de indivíduos com mais de 60 anos e em jovens. Metodologia: realizou-se um estudo analítico transversal numa amostra de 21 voluntários, sendo 11adultos jovens (idade compreendida entre 18 e 25 anos) e 10 são adultos com idade superior a 60 anos. Utilizou-se o sistema K4b2 COSMED de forma a recolher os dados relativos ao consumo energético, quociente respiratório e volume de CO2 produzido. Os participantes realizaram os diferentes tipos de marcha (marcha normal, a três pontos com andarilho fixo, a três pontos modificada com andarilho fixo, a três pontos com andarilho com rodas e a três pontos modificada com andarilho com rodas) durante 10 minutos num percurso rectilíneo de 20 metros. Para a análise estatística recorreu-se ao software IBM SPSS Statistics v20 com um nível de significância de 0,05. Resultados: observou-se que á exceção da marcha normal em todos os outros tipos de marcha com andarilho, os participantes com mais de 60 anos, apresentam valores significativamente superiores aos dos jovens, nomeadamente nas marchas com andarilho fixo, a 3 pontos e a 3 pontos modificada e com andarilho de rodas, na marcha a 3ponto modificada. Verificaram-se diferenças apenas no grupo dos jovens, pois a marcha normal apresentou valores significativamente maiores que as restantes. Conclusão: A idade influenciou os parâmetros metabólicos da marcha normal e com andarilhos fixo e móvel apresentando os idosos um maior gasto energético, bem como os METS utilizados.
Resumo:
Trabalho de Projeto para obtenção do grau de Mestre em Engenharia Informática e de Computadores
Resumo:
The presence of filamentous fungi was detected in wastewater and air collected at wastewater treatment plants (WWTP) from several European countries. The aim of the present study was to assess fungal contamination in two WWTP operating in Lisbon. In addition, particulate matter (PM) contamination data was analyzed. To apply conventional methods, air samples from the two plants were collected through impaction using an air sampler with a velocity air rate of 140 L/min. Surfaces samples were collected by swabbing the surfaces of the same indoor sites. All collected samples were incubated at 27°C for 5 to 7 d. After lab processing and incubation of collected samples, quantitative and qualitative results were obtained with identification of the isolated fungal species. For molecular methods, air samples of 250 L were also collected using the impinger method at 300 L/min airflow rate. Samples were collected into 10 ml sterile phosphate-buffered saline with 0.05% Triton X-100, and the collection liquid was subsequently used for DNA extraction. Molecular identification of Aspergillus fumigatus and Stachybotrys chartarum was achieved by real-time polymerase chain reaction (RT-PCR) using the Rotor-Gene 6000 qPCR Detection System (Corbett). Assessment of PM was also conducted with portable direct-reading equipment (Lighthouse, model 3016 IAQ). Particles concentration measurement was performed at five different sizes: PM0.5, PM1, PM2.5, PM5, and PM10. Sixteen different fungal species were detected in indoor air in a total of 5400 isolates in both plants. Penicillium sp. was the most frequently isolated fungal genus (58.9%), followed by Aspergillus sp. (21.2%) and Acremonium sp. (8.2%), in the total underground area. In a partially underground plant, Penicillium sp. (39.5%) was also the most frequently isolated, also followed by Aspergillus sp. (38.7%) and Acremonium sp. (9.7%). Using RT-PCR, only A. fumigatus was detected in air samples collected, and only from partial underground plant. Stachybotrys chartarum was not detected in any of the samples analyzed. The distribution of particle sizes showed the same tendency in both plants; however, the partially underground plant presented higher levels of contamination, except for PM2.5. Fungal contamination assessment is crucial to evaluating the potential health risks to exposed workers in these settings. In order to achieve an evaluation of potential health risks to exposed workers, it is essential to combine conventional and molecular methods for fungal detection. Protective measures to minimize worker exposure to fungi need to be adopted since wastewater is the predominant internal fungal source in this setting.
Resumo:
Mestrado, Ensino de História e Geografia no 3.º Ciclo do Ensino Básico e no Ensino Secundário, 10 de Março de 2016, Universidade dos Açores (Relatório de Estágio).
Resumo:
Pharmaceuticals are biologically active and persistent substances which have been recognized as a continuing threat to environmental stability. Chronic ecotoxicity data as well as information on the current distribution levels in different environmental compartments continue to be sparse and are focused on those therapeutic classes that are more frequently prescribed and consumed. Nevertheless, they indicate the negative impact that these chemical contaminants may have on living organisms, ecosystems and ultimately, public health. This article reviews the different contamination sources as well as fate and both acute and chronic effects on non-target organisms. An extensive review of existing data in the form of tables, encompassing many therapeutic classes is presented.
Resumo:
Cluster scheduling and collision avoidance are crucial issues in large-scale cluster-tree Wireless Sensor Networks (WSNs). The paper presents a methodology that provides a Time Division Cluster Scheduling (TDCS) mechanism based on the cyclic extension of RCPS/TC (Resource Constrained Project Scheduling with Temporal Constraints) problem for a cluster-tree WSN, assuming bounded communication errors. The objective is to meet all end-to-end deadlines of a predefined set of time-bounded data flows while minimizing the energy consumption of the nodes by setting the TDCS period as long as possible. Sinceeach cluster is active only once during the period, the end-to-end delay of a given flow may span over several periods when there are the flows with opposite direction. The scheduling tool enables system designers to efficiently configure all required parameters of the IEEE 802.15.4/ZigBee beaconenabled cluster-tree WSNs in the network design time. The performance evaluation of thescheduling tool shows that the problems with dozens of nodes can be solved while using optimal solvers.
Resumo:
We present a distributed algorithm for cyber-physical systems to obtain a snapshot of sensor data. The snapshot is an approximate representation of sensor data; it is an interpolation as a function of space coordinates. The new algorithm exploits a prioritized medium access control (MAC) protocol to efficiently transmit information of the sensor data. It scales to a very large number of sensors and it is able to operate in the presence of sensor faults.