954 resultados para Precursor
Resumo:
A new general route for the synthesis of novel beta-aryl-beta-(methylthio)acroleins, a class of stable potential 1,3-dielectrophilic synthons, has been reported. The overall protocol involves treatment of either beta-chloroacroleins or their precursor iminium salts (generated in situ from the corresponding active methylene ketones under Vilsmeier-Haack reaction conditions) with S,S-dimethyldithiocarbonates (DDC)/aqueous KOH in either a one-pot or two-step process. The dimethyldithiocarbonate (DDC)/30% aqueous KOH has been shown to be an excellent source of methylthiolate anion. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
CuIn1-xAlxSe2 (CIAS) thin films were grown on the flexible stainless steel substrates, by de co-sputtering from the elemental cathodes. CuInAl alloyed precursor films were selenized both by noble gas assisted Se vapor transport and vacuum evaporation of Se. X-ray diffraction, scanning electron microscopy and UV-visible absorption spectroscopy were used to characterize the selenized films The composition (x=Al/Al+In) with 0 <= x <= 0.65 was varied by substituting Al with indium in CuInSe2. Lattice parameters, average crystallite sizes and compact density of the films compared to CuInSe2, decreased and (112) peak shifted to higher Bragg's angle, with Al incorporation. Cells were fabricated with the device structure SS/Mo/CIAS/CdS/iZno-AZO/Al. Best cell showed the efficiency of 6.8%, with x=0.13, Eg=1.17 eV, fill factor 45.04, short circuit current density J 30 mA/cm(2).
Resumo:
Reaction of 2,2'-bipyridine (bpy) with dinuclear complexesRuCl(dfppe)(mu-Cl)(3)Ru(dmso-S)(3)](dfppe = 1,2-bis(dipentafluorophenyl phosphino)ethane (C6F5)(2)PCH2CH2P(C6F5)(2); dmso = dimethyl sulfoxide) (1) or RuCl(dfppe)(mu-Cl)(3)RuCl(dfppe)] (2) affords the mononuclear species trans-RuCl2(bpy)(dfppe)] (3). Using this precursor complex (3), a series of new cationic Ru(II) electrophilic complexes RuCl(L)(bpy)(dfppe)]Z] (L = P(OMe)(3) (5), PMe3 (6), CH3CN (7), CO (8), H2O (9); Z = OTf (5, 6, 7, 8), BAr4F (9) have been synthesized via abstraction of chloride by AgOTf or NaBAr4F in the presence of L. Complexes 5 and 6 were converted into the corresponding isomeric hydride derivatives RuH(PMe3)(bpy)(dfppe)]OTf] (10a, 10b) and RuH(P(OMe)(3))(bpy)(dfppe)]OTf] (11a, 11b) respectively, when treated with NaBH4. Protonation of the cationic monohydride complex (11a) with HOTf at low temperatures resulted in H-2 evolution accompanied by the formation of either solvent or triflate bound six coordinated species Ru(S)(P(OMe)(3))(bpy)(dfppe)]OTf](n) (S = solvent (n = 2), triflate (n = 1)] (13a/13b); these species have not been isolated and could not be established with certainty. They (13a/13b) were not isolated, instead the six-coordinated isomeric aqua complexes cis-(Ru(bpy)(dfppe)(OH2)(P(OMe)(3))]OTf](2) (14a/14b) were isolated. Reaction of the aqua complexes (14a/14b) with 1 atm of H-2 at room temperature in acetone-d(6) solvent resulted in heterolytic cleavage of the H-H bond. Results of the studies on H-2 lability and heterolytic activation using these complexes are discussed. The complexes 3, 5, 11a, and 14a have been structurally characterized.
Resumo:
Many aspects of skeletal muscle biology are remarkably similar between mammals and tiny insects, and experimental models of mice and flies (Drosophila) provide powerful tools to understand factors controlling the growth, maintenance, degeneration (atrophy and necrosis), and regeneration of normal and diseased muscles, with potential applications to the human condition. This review compares the limb muscles of mice and the indirect flight muscles of flies, with respect to the mechanisms of adult myofiber formation, homeostasis, atrophy, hypertrophy, and the response to muscle degeneration, with some comment on myogenic precursor cells and common gene regulatory pathways. There is a striking similarity between the species for events related to muscle atrophy and hypertrophy, without contribution of any myoblast fusion. Since the flight muscles of adult flies lack a population of reserve myogenic cells (equivalent to satellite cells), this indicates that such cells are not required for maintenance of normal muscle function. However, since satellite cells are essential in postnatal mammals for myogenesis and regeneration in response to myofiber necrosis, the extent to which such regeneration might be possible in flight muscles of adult flies remains unclear. Common cellular and molecular pathways for both species are outlined related to neuromuscular disorders and to age-related loss of skeletal muscle mass and function (sarcopenia). The commonality of events related to skeletal muscles in these disparate species (with vast differences in size, growth duration, longevity, and muscle activities) emphasizes the combined value and power of these experimental animal models.
Resumo:
Three new inorganic coordination polymers, {Mn(H2O)(6)]-Mn-2(H2O)(6)](Cu-6(mna)(6)]center dot 6H(2)O}, 1, {Mn-4(OH)(2)(H2O)(10)] (Cu-6(mna)6]center dot 8H(2)O}, 2, and {Mn-2(H2O)(5)]Ag-6(Hmna)(2)(mna)(4)]center dot 20H(2)O}, 3, have been synthesized at room temperature through a sequential crystallization route. In addition, we have also prepared and characterized the molecular precursor Cu-6(Hmna)(6)]. Compounds 1 and 3 have a two-dimensional structure, whereas 2 has a three-dimensional structure. The formation of 2 has been achieved by minor modification in the synthetic composition, suggesting the subtle relationship between the reactant composition and the structure. The hexanudear copper and silver duster cores have Cu center dot center dot center dot Cu and Ag center dot center dot center dot Ag distances close to the sum of the van der Waals radii of Cu1+ and Ag1+, respectively. The connectivity between Cu-6(mna)(6)](6-) cluster units and Mn2+ ions gives rise to a brucite related layer in 1 and a pcu-net in 2. The Ag-6(Hmna)(2)(mna)(4)](4-) cluster in 3, on the other hand, forms a sql-net with Mn2+. Compound 1 exhibits an interesting and reversible hydrochromic behavior, changing from pale yellow to red, on heating at 70 degrees C or treatment under a vacuum. Electron paramagnetic resonance studies indicate no change in the valence states, suggesting the color change could be due to changes in the coordination environment only. The magnetic studies indicate weak antiferromagnetic behavior. Proton conductivity studies indicate moderate proton migrations in 1 and 3. The present study dearly establishes sequential crystallization as an important pathway for the synthesis of heterometallic coordination polymers.
Resumo:
A porous layered composite of Li2MnO3 and LiMn0.35Ni0.55Fe0.1O2 (composition:Li1.2Mn0.54Ni0.22Fe0.04O2) is prepared by inverse microemulsion method and studied as a positive electrode material. The precursor is heated at several temperatures between 500 and 900 degrees C. The X-ray diffraction, scanning electron microscopy, and transmission electron microscopy studies suggested that well crystalline submicronsized particles are obtained. The product samples possess mesoporosity with broadly distributed pores around 10 similar to 50 nm diameter. Pore volume and surface area decrease by increasing the temperature of preparation. However, the electrochemical activity of the composite samples increases with an increase in temperature. The discharge capacity values of the samples prepared at 900 degrees C are about 186 mAh g(-1) at a specific current of 25 mA g(-1) with an excellent cycling stability. The composite sample also possesses high rate capability. The high rate capability is attributed to the porous nature of the material. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Decarboxylative thioesterification of isatoic anhydrides mediated by benzyl(triethyl)ammonium tetrathiomolybdate gave the corresponding S-alkyl or S-aryl 2-aminobenzenecarbothioate derivatives at 60 degrees C. At ambient temperature, organic disulfides were reductive cleaved in the presence of tetrathiomolybdate to generate thiolate anions in situ; this was followed by attack on isatoic anhydrides to give the corresponding S-alkyl or S-aryl 2-aminobenzenecarbothioate derivatives. Additionally, it was shown that multistep reactions could be performed with tetrathiomolybdate, starting with an alkyl halide as a precursor of an alkyl disulfide, which, in turn, was used for ring opening of isatoic anhydrides.
Resumo:
In the present study, we have synthesised carbon nanoparticles (CNPs) through a relatively simple process using a hydrocarbon precursor. These synthesised CNPs in the form of elongated spherules and/or agglomerates of 30-55 nm were further used as a support to anchor platinum nanoparticles. The broad light absorption (300-700 nm) and a facile charge transfer property of CNPs in addition to the plasmonic property of Pt make these platinized carbon nanostructures (CNPs/Pt) a promising candidate in photocatalytic water splitting. The photocatalytic activity was evaluated using ethanol as the sacrificial donor. The photocatalyst has shown remarkable activity for hydrogen production under UV-visible light while retaining its stability for nearly 70 h. The broadband absorption of CNPs, along with the Surface Plasmon Resonance (SPR) effect of PtNPs singly and in composites has pronounced influence on the photocatalytic activity, which has not been explored earlier. The steady rate of hydrogen was observed to be 20 mu mol h(-1) with an exceptional cumulative hydrogen yield of 32.16 mmol h(-1) g(-1) observed for CNPs/Pt, which is significantly higher than that reported for carbon-based systems.
Resumo:
Undoped and Sn-doped WO3 thin films were grown on cleaned glass substrates by chemical spray pyrolysis, using ammonium tungstate (NH4)(2)WO4 as the host precursor and tin chloride (SnCl4 center dot 5H(2)O) as the source of dopant. The XRD spectra confirm the monoclinic structure with a sharp narrow peak along (200) direction along with other peaks of low relative intensities for all the samples. On Sn doping, the films exhibit reduced crystallinity relative to the undoped film. The standard deviation for relative peak intensity with dopant concentration shows enhancement in heterogeneous nucleation growth. As evident from SEM images, on Sn doping, appearance of island-like structure (i.e., cluster of primary crystallites at few places) takes place. The transmittance has been found to decrease in all the Sn-doped films. The optical band gap has been calculated for both direct and indirect transitions. On Sn doping, the direct band gap shows a red shift and becomes 2.89 eV at 2 at.% doping. Two distinct peaks, one blue emission at 408 nm and other green emission at 533 nm, have been found in the PL spectra. Electrical conductivity has been found to increase with Sn doping.
Resumo:
Cobalt ferrite nanoparticles with average sizes of 14, 9 and 6 nm were synthesised by the chemical co-precipitation technique. Average particle sizes were varied by changing the chitosan surfactant to precursor molar ratio in the reaction mixture. Transmission electron microscopy images revealed a faceted and irregular morphology for the as-synthesised nanoparticles. Magnetic measurements revealed a ferromagnetic nature for the 14 and 9 nm particles and a superparamagnetic nature for the 6 nm particles. An increase in saturation magnetisation with increasing particle size was noted. Relaxivity measurements were carried out to determine T-2 value as a function of particle size using nuclear magnetic resonance measurements. The relaxivity coefficient increased with decrease in particle size and decrease in the saturation magnetisation value. The observed trend in the change of relaxivity value with particle size was attributed to the faceted nature of as-synthesised nanoparticles. Faceted morphology results in the creation of high gradient of magnetic field in the regions adjacent to the facet edges increasing the relaxivity value. The effect of edges in increasing the relaxivity value increases with decrease in the particle size because of an increase in the total number of edges per particle dispersion.
Resumo:
The ability of carbon to exist in many forms across dimensions has spawned search in exploring newer allotropes consisting of either, different networks of polygons or rings. While research on various 3D phases of carbon has been extensive, 2D allotropes formed from stable rings are yet to be unearthed. Here, we report a new sp(2) hybridized two-dimensional allotrope consisting of continuous 5-6-8 rings of carbon atoms, named as ``pentahexoctite''. The absence of unstable modes in the phonon spectra ensures the stability of the planar sheet. Furthermore, this sheet has mechanical strength comparable to graphene. Electronically, the sheet is metallic with direction-dependent flat and dispersive bands at the Fermi level ensuring highly anisotropic transport properties. This sheet serves as a precursor for stable 1D nanotubes with chirality-dependent electronic and mechanical properties. With these unique properties, this sheet becomes another exciting addition to the family of robust novel 2D allotropes of carbon.
Resumo:
Synthesis of size selective monodispersed nanoparticles particularly intermetallic with well-defined compositions represents a challenge. This paper presents a way for the synthesis of intermetallic AuCu nanoparticles as a model system. We show that reduction of Au and Cu precursors is sensitive to the ratio of total molar concentrations of surfactant to metal precursors. A careful design of experiments to understand the kinetics of the reduction process reveals initial formation of seed nanoparticles of pure Au. Reduction of Cu occurs on the surface of the seed followed by diffusion to yield AuCu. This understanding allows us to develop a two step synthesis where the precise size controlled seed of Au nanoparticles produced in the first step is used in the second step reaction mixture as an Au precursor to allow deposition and interdiffusion of Cu that yields size selected AuCu intermetallics of sub 10 nm sizes.
Resumo:
The two-step particle synthesis mechanism, also known as the Finke-Watzky (1997) mechanism, has emerged as a significant development in the field of nanoparticle synthesis. It explains a characteristic feature of the synthesis of transition metal nanoparticles, an induction period in precursor concentration followed by its rapid sigmoidal decrease. The classical LaMer theory (1950) of particle formation fails to capture this behavior. The two-step mechanism considers slow continuous nucleation and autocatalytic growth of particles directly from precursor as its two kinetic steps. In the present work, we test the two-step mechanism rigorously using population balance models. We find that it explains precursor consumption very well, but fails to explain particle synthesis. The effect of continued nucleation on particle synthesis is not suppressed sufficiently by the rapid autocatalytic growth of particles. The nucleation continues to increase breadth of size distributions to unexpectedly large values as compared to those observed experimentally. A number of variations of the original mechanism with additional reaction steps are investigated next. The simulations show that continued nucleation from the beginning of the synthesis leads to formation of highly polydisperse particles in all of the tested cases. A short nucleation window, realized with delayed onset of nucleation and its suppression soon after in one of the variations, appears as one way to explain all of the known experimental observations. The present investigations clearly establish the need to revisit the two-step particle synthesis mechanism.
Resumo:
Different types of Large Carbon Cluster (LCC) layers are synthesized by a single-step pyrolysis technique at various ratios of precursor mixture. The aim is to develop a fast responsive and stable thermal gauge based on a LCC layer which has relatively good electrical conduction in order to use it in the hypersonic flow field. The thermoelectric property of the LCC layer has been studied. It is found that these carbon clusters are sensitive to temperature changes. Therefore suitable thermal gauges were developed for blunt cone bodies and were tested in hypersonic shock tunnels at a flow Mach number of 6.8 to measure aerodynamic heating. The LCC layer of this thermal gauge encounters high shear forces and a hostile environment for test duration in the range of a millisecond. The results are favorable to use large carbon clusters as a better sensor than a conventional platinum thin film gauge in view of fast responsiveness and stability.
Resumo:
In this study, thin films of cobalt oxide (Co3O4) have been grown by the metal-organic chemical vapor deposition (MOCVD) technique on stainless steel substrate at two preferred temperatures (450 degrees C and 500 degrees C), using cobalt acetylacetonate dihydrate as precursor. Spherical as well as columnar microstructures of Co3O4 have been observed under controlled growth conditions. Further investigations reveal these films are phase-pure, well crystallized and carbon-free. High-resolution TEM analysis confirms that each columnar structure is a continuous stack of minute crystals. Comparative study between these Co3O4 films grown at 450 degrees C and 500 degrees C has been carried out for their application as negative electrodes in Li-ion batteries. Our method of electrode fabrication leads to a coating of active material directly on current collector without any use of external additives. A high specific capacity of 1168 micro Ah cm(-2) mu m(-1) has been measured reproducibly for the film deposited at 500 degrees C with columnar morphology. Further, high rate capability is observed when cycled at different current densities. The Co3O4 electrode with columnar structure has a specific capacity 38% higher than the electrode with spherical microstructure (grown at 450 degrees C). Impedance measurements on the Co3O4 electrode grown at 500 degrees C also carried out to study the kinetics of the electrode process. (C) 2014 Published by Elsevier B.V.