993 resultados para Power metal
Resumo:
The application of flux cored arc welding (FCAW) has increased in manufacturing and fabrication. Even though FCAW is well known for its good capability in producing quality welds, few reports have been published on the cause of the relatively high diffusible hydrogen content in the weld metal and its relation with the ingredients used in the wire production and with the welding parameters (mainly welding current). This paper describes experiments where data obtained from weld metal diffusible hydrogen analysis, metal droplet collection, and high-speed recording of metal droplet transfer were used to evaluate the effect of welding current on diffusible hydrogen content in the weld metal. The results from gas chromatography analysis showed that weld metal hydrogen content indeed increased with welding current. A polynomial regressional analysis concluded that hydrogen increase with current was better described by a linear function with proportional constant of approximately 0.7 or 70%. Different from the GMA welding transfer behavior, statistical analysis showed only a small increase in metal droplet size with increasing current. The metal transfer mode remained in the globular range for currents between 100 and 150 A. The most surprising findings were with the high-speed cinematography recording. Observing the high speed movies, it was possible to see that at low current, "unmelted" flux sporadically touched the weld pool but at higher current, the flux remained touching the weld pool during the whole time of droplet formation and transfer. It is believed that since the flux has ingredients that contain hydrogen, hydrogen passes through the arc undisturbed, going to the weld bead intact and increasing the hydrogen content in the weld metal. Another important observation is regarding to droplet size. Droplet size increased with increasing current because forces from decomposed gases from the flux could sustain the droplets, retarding their transfer and allowing them to grow.
Resumo:
Wind power is a low-carbon energy production form that reduces the dependence of society on fossil fuels. Finland has adopted wind energy production into its climate change mitigation policy, and that has lead to changes in legislation, guidelines, regional wind power areas allocation and establishing a feed-in tariff. Wind power production has indeed boosted in Finland after two decades of relatively slow growth, for instance from 2010 to 2011 wind energy production increased with 64 %, but there is still a long way to the national goal of 6 TWh by 2020. This thesis introduces a GIS-based decision-support methodology for the preliminary identification of suitable areas for wind energy production including estimation of their level of risk. The goal of this study was to define the least risky places for wind energy development within Kemiönsaari municipality in Southwest Finland. Spatial multicriteria decision analysis (SMCDA) has been used for searching suitable wind power areas along with many other location-allocation problems. SMCDA scrutinizes complex ill-structured decision problems in GIS environment using constraints and evaluation criteria, which are aggregated using weighted linear combination (WLC). Weights for the evaluation criteria were acquired using analytic hierarchy process (AHP) with nine expert interviews. Subsequently, feasible alternatives were ranked in order to provide a recommendation and finally, a sensitivity analysis was conducted for the determination of recommendation robustness. The first study aim was to scrutinize the suitability and necessity of existing data for this SMCDA study. Most of the available data sets were of sufficient resolution and quality. Input data necessity was evaluated qualitatively for each data set based on e.g. constraint coverage and attribute weights. Attribute quality was estimated mainly qualitatively by attribute comprehensiveness, operationality, measurability, completeness, decomposability, minimality and redundancy. The most significant quality issue was redundancy as interdependencies are not tolerated by WLC and AHP does not include measures to detect them. The third aim was to define the least risky areas for wind power development within the study area. The two highest ranking areas were Nordanå-Lövböle and Påvalsby followed by Helgeboda, Degerdal, Pungböle, Björkboda, and Östanå-Labböle. The fourth aim was to assess the recommendation reliability, and the top-ranking two areas proved robust whereas the other ones were more sensitive.
Resumo:
Larsmo-Öjasjön i Österbotten skapades genom invallningar på 1960-talet pga. industrins behov av sötvatten. Sedan dess har vattenområdet drabbats av återkommande försurning och fiskdöd, och invallningen har ofta beskyllts för problemen. Avhandlingen undersöker syrabelastningen i området; bl.a. hur markanvändning, hydrologi och klimatförändringen påverkar belastningen. Konsekvenserna undersöks med fiskyngel som bioindikator, och olika miljömetoder testas och diskuteras. Ökad kunskap om försurningen hjälper oss att tillämpa effektiva miljömetoder och få förbättrad vattenkvalitet i framtiden. Den primära orsaken till den försämrade vattenkvaliteten under de senaste 40 åren är intensiv dikning av svavelrika sediment. Detta leder till oxidering av svavlet till svavelsyra och uppkomst av sura sulfatjordar. Syran löser upp mängder med toxiska metaller som spolas ut i vattendragen. Undersökningen visar att tiotusentals ton svavelsyra tillsammans med stora mängder metaller rinner till Larsmo-Öjasjön per år från sura sulfatjordar. Åarna bidrar med mest belastning, men den sammanlagda belastningen från de otaliga dikena och bäckarna är oväntat stor. Andra potentiella källor till försurningen, t.ex. muddringar och humussyror, beräknas vara obetydliga. Syra- och metallbelastningen varierar kraftigt med hydrologin, dvs. störst belastning sker under vår- och höstflöden. En eventuell klimatförändring kan ändra på avrinningsmönstret och orsaka mera belastning vintertid. Den årligt återkommande syra- och metallbelastningen kan ofta hindra lakens förökning, vilket kan ha större långtgående konsekvenser för fiskpopulationerna än de relativt sällsynta stora surchockerna med synlig fiskdöd. För att förebygga skador på vattendragen bör man undvika att dränera svavelrika sedimenten. På redan existerande sura sulfatjordar visade sig kontroll av grundvattennivån kunna möjliggöra en effektiverad markanvändning utan märkbart ökade miljökonsekvenser.
Resumo:
Collaboration is essential for successful new product development. In the preparation for ramp-up production collaboration between R&D and supply chain functions is crucial. This thesis examines the meaning of collaboration and the effects of collaboration between R&D and supply chain. The aim of this thesis is to analyse and advice on how to improve the collaboration between the research and development department and supply chain within the preparation for rampup process. This thesis begins by introducing the reader to the product development methodologies and collaboration literature. The following part of the thesis describes the current situation and the results of the qualitative research. The last part of the thesis will explain the improvement suggestions. The main improvement suggestions are clarification of the processes and responsibilities and the introduction of a kick-off meeting.
Resumo:
Communications play a key role in modern smart grids. New functionalities that make the grids ‘smart’ require the communication network to function properly. Data transmission between intelligent electric devices (IEDs) in the rectifier and the customer-end inverters (CEIs) used for power conversion is also required in the smart grid concept of the low-voltage direct current (LVDC) distribution network. Smart grid applications, such as smart metering, demand side management (DSM), and grid protection applied with communications are all installed in the LVDC system. Thus, besides remote connection to the databases of the grid operators, a local communication network in the LVDC network is needed. One solution applied to implement the communication medium in power distribution grids is power line communication (PLC). There are power cables in the distribution grids, and hence, they may be applied as a communication channel for the distribution-level data. This doctoral thesis proposes an IP-based high-frequency (HF) band PLC data transmission concept for the LVDC network. A general method to implement the Ethernet-based PLC concept between the public distribution rectifier and the customerend inverters in the LVDC grid is introduced. Low-voltage cables are studied as the communication channel in the frequency band of 100 kHz–30 MHz. The communication channel characteristics and the noise in the channel are described. All individual components in the channel are presented in detail, and a channel model, comprising models for each channel component is developed and verified by measurements. The channel noise is also studied by measurements. Theoretical signalto- noise ratio (SNR) and channel capacity analyses and practical data transmission tests are carried out to evaluate the applicability of the PLC concept against the requirements set by the smart grid applications in the LVDC system. The main results concerning the applicability of the PLC concept and its limitations are presented, and suggestion for future research proposed.
Resumo:
Torrefaction is one of the pretreatment technologies to enhance the fuel characteristics of biomass. The efficient and continuous operation of a torrefaction reactor, in the commercial scale, demands a secure biomass supply, in addition to adequate source of heat. Biorefinery plants or biomass-fuelled steam power plants have the potential to integrate with the torrefaction reactor to exchange heat and mass, using available infrastructure and energy sources. The technical feasibility of this integration is examined in this study. A new model for the torrefaction process is introduced and verified by the available experimental data. The torrefaction model is then integrated in different steam power plants to simulate possible mass and energy exchange between the reactor and the plants. The performance of the integrated plant is investigated for different configurations and the results are compared.
Resumo:
Global warming is assertively the greatest environmental challenge for humans of 21st century. It is primarily caused by the anthropogenic greenhouse gas (GHG) that trap heat in the atmosphere. Because of which, the GHG emission mitigation, globally, is a critical issue in the political agenda of all high-profile nations. India, like other developing countries, is facing this threat of climate change while dealing with the challenge of sustaining its rapid economic growth. India’s economy is closely connected to its natural resource base and climate sensitive sectors like water, agriculture and forestry. Due to Climate change the quality and distribution of India’s natural resources may transform and lead to adverse effects on livelihood of its people. Therefore, India is expected to face a major threat due to the projected climate change. This study proposes possible solutions for GHG emission mitigation that are specific to the power sector of India. The methods discussed here will take Indian power sector from present coal dominant ideology to a system, centered with renewable energy sources. The study further proposes a future scenario for 2050, based on the present Indian government policies and global energy technologies advancements.
Resumo:
The Arctic region becoming very active area of the industrial developments since it may contain approximately 15-25% of the hydrocarbon and other valuable natural resources which are in great demand nowadays. Harsh operation conditions make the Arctic region difficult to access due to low temperatures which can drop below -50 °C in winter and various additional loads. As a result, newer and modified metallic materials are implemented which can cause certain problems in welding them properly. Steel is still the most widely used material in the Arctic regions due to high mechanical properties, cheapness and manufacturability. Moreover, with recent steel manufacturing development it is possible to make up to 1100 MPa yield strength microalloyed high strength steel which can be operated at temperatures -60 °C possessing reasonable weldability, ductility and suitable impact toughness which is the most crucial property for the Arctic usability. For many years, the arc welding was the most dominant joining method of the metallic materials. Recently, other joining methods are successfully implemented into welding manufacturing due to growing industrial demands and one of them is the laser-arc hybrid welding. The laser-arc hybrid welding successfully combines the advantages and eliminates the disadvantages of the both joining methods therefore produce less distortions, reduce the need of edge preparation, generates narrower heat-affected zone, and increase welding speed or productivity significantly. Moreover, due to easy implementation of the filler wire, accordingly the mechanical properties of the joints can be manipulated in order to produce suitable quality. Moreover, with laser-arc hybrid welding it is possible to achieve matching weld metal compared to the base material even with the low alloying welding wires without excessive softening of the HAZ in the high strength steels. As a result, the laser-arc welding methods can be the most desired and dominating welding technology nowadays, and which is already operating in automotive and shipbuilding industries with a great success. However, in the future it can be extended to offshore, pipe-laying, and heavy equipment industries for arctic environment. CO2 and Nd:YAG laser sources in combination with gas metal arc source have been used widely in the past two decades. Recently, the fiber laser sources offered high power outputs with excellent beam quality, very high electrical efficiency, low maintenance expenses, and higher mobility due to fiber optics. As a result, fiber laser-arc hybrid process offers even more extended advantages and applications. However, the information about fiber or disk laser-arc hybrid welding is very limited. The objectives of the Master’s thesis are concentrated on the study of fiber laser-MAG hybrid welding parameters in order to understand resulting mechanical properties and quality of the welds. In this work only ferrous materials are reviewed. The qualitative methodological approach has been used to achieve the objectives. This study demonstrates that laser-arc hybrid welding is suitable for welding of many types, thicknesses and strength of steels with acceptable mechanical properties along very high productivity. New developments of the fiber laser-arc hybrid process offers extended capabilities over CO2 laser combined with the arc. This work can be used as guideline in hybrid welding technology with comprehensive study the effect of welding parameter on joint quality.
Resumo:
The iron and steelmaking industry is among the major contributors to the anthropogenic emissions of carbon dioxide in the world. The rising levels of CO2 in the atmosphere and the global concern about the greenhouse effect and climate change have brought about considerable investigations on how to reduce the energy intensity and CO2 emissions of this industrial sector. In this thesis the problem is tackled by mathematical modeling and optimization using three different approaches. The possibility to use biomass in the integrated steel plant, particularly as an auxiliary reductant in the blast furnace, is investigated. By pre-processing the biomass its heating value and carbon content can be increased at the same time as the oxygen content is decreased. As the compression strength of the preprocessed biomass is lower than that of coke, it is not suitable for replacing a major part of the coke in the blast furnace burden. Therefore the biomass is assumed to be injected at the tuyere level of the blast furnace. Carbon capture and storage is, nowadays, mostly associated with power plants but it can also be used to reduce the CO2 emissions of an integrated steel plant. In the case of a blast furnace, the effect of CCS can be further increased by recycling the carbon dioxide stripped top gas back into the process. However, this affects the economy of the integrated steel plant, as the amount of top gases available, e.g., for power and heat production is decreased. High quality raw materials are a prerequisite for smooth blast furnace operation. High quality coal is especially needed to produce coke with sufficient properties to ensure proper gas permeability and smooth burden descent. Lower quality coals as well as natural gas, which some countries have in great volumes, can be utilized with various direct and smelting reduction processes. The DRI produced with a direct reduction process can be utilized as a feed material for blast furnace, basic oxygen furnace or electric arc furnace. The liquid hot metal from a smelting reduction process can in turn be used in basic oxygen furnace or electric arc furnace. The unit sizes and investment costs of an alternative ironmaking process are also lower than those of a blast furnace. In this study, the economy of an integrated steel plant is investigated by simulation and optimization. The studied system consists of linearly described unit processes from coke plant to steel making units, with a more detailed thermodynamical model of the blast furnace. The results from the blast furnace operation with biomass injection revealed the importance of proper pre-processing of the raw biomass as the composition of the biomass as well as the heating value and the yield are all affected by the pyrolysis temperature. As for recycling of CO2 stripped blast furnace top gas, substantial reductions in the emission rates are achieved if the stripped CO2 can be stored. However, the optimal recycling degree together with other operation conditions is heavily dependent on the cost structure of CO2 emissions and stripping/storage. The economical feasibility related to the use of DRI in the blast furnace depends on the price ratio between the DRI pellets and the BF pellets. The high amount of energy needed in the rotary hearth furnace to reduce the iron ore leads to increased CO2 emissions.
Resumo:
Laser additive manufacturing (LAM), known also as 3D printing, has gained a lot of interest in past recent years within various industries, such as medical and aerospace industries. LAM enables fabrication of complex 3D geometries by melting metal powder layer by layer with laser beam. Research in laser additive manufacturing has been focused in development of new materials and new applications in past 10 years. Since this technology is on cutting edge, efficiency of manufacturing process is in center role of research of this industry. Aim of this thesis is to characterize methods for process efficiency improvements in laser additive manufacturing. The aim is also to clarify the effect of process parameters to the stability of the process and in microstructure of manufactured pieces. Experimental tests of this thesis were made with various process parameters and their effect on build pieces has been studied, when additive manufacturing was performed with a modified research machine representing EOSINT M-series and with EOS EOSINT M280. Material used was stainless steel 17-4 PH. Also, some of the methods for process efficiency improvements were tested. Literature review of this thesis presents basics of laser additive manufacturing, methods for improve the process efficiency and laser beam – material- interaction. It was observed that there are only few public studies about process efficiency of laser additive manufacturing of stainless steel. According to literature, it is possible to improve process efficiency with higher power lasers and thicker layer thicknesses. The process efficiency improvement is possible if the effect of process parameter changes in manufactured pieces is known. According to experiments carried out in this thesis, it was concluded that process parameters have major role in single track formation in laser additive manufacturing. Rough estimation equations were created to describe the effect of input parameters to output parameters. The experimental results showed that the WDA (width-depth-area of cross-sections of single track) is correlating exponentially with energy density input. The energy density input is combination of the input parameters of laser power, laser beam spot diameter and scan speed. The use of skin-core technique enables improvement of process efficiency as the core of the part is manufactured with higher laser power and thicker layer thickness and the skin with lower laser power and thinner layer thickness in order to maintain high resolution. In this technique the interface between skin and core must have overlapping in order to achieve full dense parts. It was also noticed in this thesis that keyhole can be formed in LAM process. It was noticed that the threshold intensity value of 106 W/cm2 was exceeded during the tests. This means that in these tests the keyhole formation was possible.
Resumo:
Bullying is characterized by an inequality of power between perpetrator and target. Findings that bullies can be highly popular have helped redefine the old conception of the maladjusted school bully into a powerful individual exerting influence on his peers from the top of the peer status hierarchy. Study I is a conceptual paper that explores the conditions under which a skillful, socially powerful bully can use the peer group as a means of aggression and suggests that low cohesion and low quality of friendships make groups easier to manipulate. School bullies’ high popularity should be a major obstacle for antibullying efforts, as bullies are unlikely to cease negative actions that are rewarding, and their powerful position could discourage bystanders from interfering. Using data from the Finnish program KiVa, Study II supported the hypothesis that antibullying interventions are less effective with popular bullies in comparison to their unpopular counterparts. In order to design interventions that can address the positive link between popularity and aggression, it is necessary to determine in which contexts bullies achieve higher status. Using an American sample, Study III examined the effects of five classroom features on the social status that peers accord to aggressive children, including classroom status hierarchy, academic level and grade level, controlling for classroom mean levels of aggression and ethnic distribution. Aggressive children were more popular and better liked in fifth grade relative to fourth grade and in classrooms of higher status hierarchy. Surprisingly, the natural emergence of status hierarchies in children’s peer groups has long been assumed to minimize aggression. Whether status hierarchies hinder or promote bullying is a controversial question in the peer relations’ literature. Study IV aimed at clarifying this debate by testing the effects of the degree of classroom status hierarchy on bullying. Higher hierarchy was concrrently associated with bullying and predictive of higher bullying six months later. As bullies’ quest for power is increasingly acknowledged, some researchers suggest teaching bullies to attain the elevated status they yearn for through prosocial acts. Study V cautions against such solutions by reviewing evidence that prosocial behaviors enacted with the intention of controlling others can be as harmful as aggression.
Resumo:
Uusiutuvan sähköntuotannon osuuden kasvaessa kasvaa tarve tasata sähköntuotannon ja kulutuksen vaihteluita varastoimalla sähköä. Power to Gas (PtG) - sähköenergiasta luonnonkaasua tarjoaa yhden mahdollisuuden varastoida sähköä. Sähköä käytetään veden elektrolyysiin, jossa syntynyt vety käytetään metanoinissa yhdessä hiilidioksidin kanssa muodostamaan korvaavaa luonnonkaasua. Näin syntynyttä korvaava luonnonkaasua sähköstä kutsutaan e-SNG-kaasuksi. Tässä työssä tutkitaan PtG-laitoksen investointi, käyttö- ja kunnossapitokuluja. Työssä luodaan laskentamalli, jolla lasketaan PtG-laitoksen neljälle käyttötapaukselle kannattavuuslaskelma. Käyttötapauksille lasketaan myös herkkyystarkasteluja. Kannattavuuslaskelmien perusteella päätellään PtG-laitoksen liiketoimintamahdollisuudet Suomessa. Työssä laskettujen kannattavuuslaskelmien perusteella PtG-laitoksen perustapausten liiketoimintamahdollisuudet ovat huonot. Laskettujen herkkyystarkastelujen perusteella havaittiin, että investointikulut, laitoksen ajoaika ja lisätulot hapesta ja lämmöstä ovat kannattavuuden kannalta kriittisimmät menestystekijät.
Resumo:
A program for calculating low-speed low-power synchronous machine is presented. A permanent-magnet synchronous generator for 1 kW 150 rpm is designed. Optimization of magnet’s and coil’s dimensions was made.