1000 resultados para Polymer sponges
Resumo:
A statistical thermodynamics theory of polydisperse polymer mixtures with strong interaction between dissimilar components based on a lattice fluid model is formulated. Expressions for the free energy, equation of state, phase stability and spinodal for a polydisperse, binary polymer mixture with strong interaction are derived.
Resumo:
Non-steady-state chronoamperometry of ultramicroelectrodes is a powerful method for the study of mass transport in polymer films. This method has many advantages over the conventional methods at a macroelectrode and the steady state method at an ultramicroelectrode, which yield the most information. The apparent diffusion coefficient, D(app), and the concentration of reactant in the film, c(f), can be determined from a single experiment without knowing the thickness of the film. We studied the transport of several species such as Ru(NH3)63+, Ru(bpy)3(2+), NR and MV2+ in Eastman-AQ polymer film coated ultramicroelectrodes by using this method.
Resumo:
The optical rotatory of helix polymer poly(triphenylmethyl methacrylate) (PTrMA) has been studied. The specific rotation of PTrMA is related with the length of helical chain linearly, while P(n)BAR<6 and P(n)BAR greater-than-or-equal-to 15. When P(n)BAR greater-than-or-equal-to 15, [alpha]D/20 = 1.6 P(n)BAR + 290-degrees. The contribution of each repeating unit to [alpha]D/20 is 1.6-degrees. In the 300-600 nm region, the ORD of PTrMA obeys both the Drude equation and Moffitt equation. The relationship between the [alpha]D of PTrMA and the solvent, concentration and temperature has also been investigated.
Resumo:
A new equation of state for polymer solids is given by P = B0/4 98[(V0/V)7.14 - (V0/V)2.16 + T/T0] comparison of the equation of state with experimental data is made for six kinds of polymers at different temperatures and pressures. The results obtained shown that the equation is suitable to describe the compression behavior of solid polymers in the region without transition.
Resumo:
The criteria of polymer-polymer miscibility determined by viscometry are reviewed, and a new criterion is proposed based on the classical Huggins equation and the Huggins coefficient K(m) in the blends. It was found that, in a ternary (polymer-A)-(polymer-B)-solvent system, [GRAPHICS] In the absence of strong specific interaction forces between molecules that would encourage aggregation and at sufficiently low concentration, the above equation can be written thus: [GRAPHICS] This equation can be used to determine the miscibility of polymer blends, when: alpha greater-than-or-equal-to 0 miscible, alpha < 0 immiscible. It is found that the new criterion is reasonable and suitable to predict polymer-polymer miscibility by the viscometry method.
Resumo:
An epoxy network-LiClO4 electrolyte system was prepared from diglycidyl ether of polyethylene glycol and triglycidyl ether of glycerol, cured in the presence of LiClO4 only. Various techniques were used to characterize the chemical structure of the precursors and the correlation between the viscoelasticity and conductivity of the cured films was examined.
Resumo:
An equation has been derived for the equilibrium swelling of sequential interpenetrating polymer networks (IPNs), which exhibit a single glass transition temperature and the two components are considered to be compatible. The properties of the equilibrium swelling and elastic modulus of sequential poly(vinyl acetate)/poly(methyl acrylate) IPNs have been discussed according to the derived equation and the Siegfried-Thomas-Sperling formula of the elastic modulus for homo IPNs. In both fully swollen and bulk states, there was favourable evidence for added physical crosslinks in poly(vinyl acetate)/poly(methyl acrylate) IPNs. The Binder-Frisch theory is also discussed.
Resumo:
A statistical thermodynamics theory of a polydisperse polymer based on a lattice model of a fluid is formulated. The pure polydisperse polymer is completely characterized by three scale factors and the distribution law of the system. The equation of state does not satisfy a simple corresponding state principle, except for the polymer fluid with sufficiently high molecular weight.
Resumo:
The C=C stretching Raman shifts and photoluminescence (PL) for poly(3-methylthiophene) (P3MT) are measured at various doping levels by in situ electrochemical Raman and PL spectroscopic techniques. It is found that the doping for P3MT induces the nonlinear excitations (soliton, Polaron, bipolaron), but also affects the polymer-chain structure, including the conjugated length and the interchain distance.
Resumo:
Poly(2-acrylamido-hexadecylsulfonic acid) (PAMC16S) forms a stable monolayer on a pure water surface. More closely packed monolayers can be obtained when the subphase contains Cd2+ or Ca2+. Self-assembled monolayers have been formed on gold surfaces and characterized by contact angle measurement, XPS and electrochemical analysis. The results show that the monolayers are hydrophobic with the hydrophilic sulfonic acid groups adjacent to the metal surfaces and with the hydrocarbon chains extended from the surfaces. The monolayers exhibit great adsorption stability during the faradaic reactions, illustrating the advantage of polymeric LB films in potential applications.
Resumo:
Dynamic scaling and fractal behaviour of spinodal phase separation is studied in a binary polymer mixture of poly(methyl methacrylate) (PMMA) and poly(styrene-co-acrylonitrile) (SAN). In the later stages of spinodal phase separation, a simple dynamic scaling law was found for the scattering function S(q,t):S(q,t) approximately q(m)-3S approximately (q/q(m)). The possibility of using fractal theory to describe the complex morphology of spinodal phase separation is discussed. In phase separation, morphology exhibits strong self-similarity. The two-dimensional image obtained by optical microscopy can be analysed within the framework of fractal concepts. The results give a fractal dimension of 1.64. This implies that the fractal structure may be the reason for the dynamic scaling behaviour of the structure function.
Resumo:
The ultra-thin modified PEO (polyethylene oxide)-LiClO4 polymer electrolyte film (50-mu-m) was obtained by solution-casting technique. Impedance spectra were taken on the cells consisting of above PEO film electrolyte and ion-blocking or nonblocking electrodes. The ambient conductivity as high as 1.33 X 10(-4)S cm-1 could be achieved for PEO electrolyte modified by the crosslinking. It was shown that the resistance at the interface between solid polymer electrolyte and lithium electrode is growing with increasing the storage time. At high temperature, as 96-degrees-C, the ionic transport is clearly controlled by diffusion.
Resumo:
The conformation of phenyl rings in the side groups of the helical chain polymer poly(tripenyl-methyl methacrylate) (1) in solution was studied by spectroscopic methods. According to the Raman spectrum the phenyl rings of 1 and triphenylmethyl methacrylate in solution have the same depolarization ratio at 1002 cm-1. The electronic spectra (ultraviolet and fluorescence) of 1 are similar to those of model substances, except for the "red shift" of the spectra of about 5 nm. It was concluded that the phenyl rings can rotate around the phenyl-C bond.