968 resultados para Poisson-Boltzmann
Resumo:
The contribution investigates the problem of estimating the size of a population, also known as the missing cases problem. Suppose a registration system is targeting to identify all cases having a certain characteristic such as a specific disease (cancer, heart disease, ...), disease related condition (HIV, heroin use, ...) or a specific behavior (driving a car without license). Every case in such a registration system has a certain notification history in that it might have been identified several times (at least once) which can be understood as a particular capture-recapture situation. Typically, cases are left out which have never been listed at any occasion, and it is this frequency one wants to estimate. In this paper modelling is concentrating on the counting distribution, e.g. the distribution of the variable that counts how often a given case has been identified by the registration system. Besides very simple models like the binomial or Poisson distribution, finite (nonparametric) mixtures of these are considered providing rather flexible modelling tools. Estimation is done using maximum likelihood by means of the EM algorithm. A case study on heroin users in Bangkok in the year 2001 is completing the contribution.
Resumo:
Background: The present paper investigates the question of a suitable basic model for the number of scrapie cases in a holding and applications of this knowledge to the estimation of scrapie-ffected holding population sizes and adequacy of control measures within holding. Is the number of scrapie cases proportional to the size of the holding in which case it should be incorporated into the parameter of the error distribution for the scrapie counts? Or, is there a different - potentially more complex - relationship between case count and holding size in which case the information about the size of the holding should be better incorporated as a covariate in the modeling? Methods: We show that this question can be appropriately addressed via a simple zero-truncated Poisson model in which the hypothesis of proportionality enters as a special offset-model. Model comparisons can be achieved by means of likelihood ratio testing. The procedure is illustrated by means of surveillance data on classical scrapie in Great Britain. Furthermore, the model with the best fit is used to estimate the size of the scrapie-affected holding population in Great Britain by means of two capture-recapture estimators: the Poisson estimator and the generalized Zelterman estimator. Results: No evidence could be found for the hypothesis of proportionality. In fact, there is some evidence that this relationship follows a curved line which increases for small holdings up to a maximum after which it declines again. Furthermore, it is pointed out how crucial the correct model choice is when applied to capture-recapture estimation on the basis of zero-truncated Poisson models as well as on the basis of the generalized Zelterman estimator. Estimators based on the proportionality model return very different and unreasonable estimates for the population sizes. Conclusion: Our results stress the importance of an adequate modelling approach to the association between holding size and the number of cases of classical scrapie within holding. Reporting artefacts and speculative biological effects are hypothesized as the underlying causes of the observed curved relationship. The lack of adjustment for these artefacts might well render ineffective the current strategies for the control of the disease.
Resumo:
Two simple and frequently used capture–recapture estimates of the population size are compared: Chao's lower-bound estimate and Zelterman's estimate allowing for contaminated distributions. In the Poisson case it is shown that if there are only counts of ones and twos, the estimator of Zelterman is always bounded above by Chao's estimator. If counts larger than two exist, the estimator of Zelterman is becoming larger than that of Chao's, if only the ratio of the frequencies of counts of twos and ones is small enough. A similar analysis is provided for the binomial case. For a two-component mixture of Poisson distributions the asymptotic bias of both estimators is derived and it is shown that the Zelterman estimator can experience large overestimation bias. A modified Zelterman estimator is suggested and also the bias-corrected version of Chao's estimator is considered. All four estimators are compared in a simulation study.
Resumo:
None of the current surveillance streams monitoring the presence of scrapie in Great Britain provide a comprehensive and unbiased estimate of the prevalence of the disease at the holding level. Previous work to estimate the under-ascertainment adjusted prevalence of scrapie in Great Britain applied multiple-list capture-recapture methods. The enforcement of new control measures on scrapie-affected holdings in 2004 has stopped the overlapping between surveillance sources and, hence, the application of multiple-list capture-recapture models. Alternative methods, still under the capture-recapture methodology, relying on repeated entries in one single list have been suggested in these situations. In this article, we apply one-list capture-recapture approaches to data held on the Scrapie Notifications Database to estimate the undetected population of scrapie-affected holdings with clinical disease in Great Britain for the years 2002, 2003, and 2004. For doing so, we develop a new diagnostic tool for indication of heterogeneity as well as a new understanding of the Zelterman and Chao's lower bound estimators to account for potential unobserved heterogeneity. We demonstrate that the Zelterman estimator can be viewed as a maximum likelihood estimator for a special, locally truncated Poisson likelihood equivalent to a binomial likelihood. This understanding allows the extension of the Zelterman approach by means of logistic regression to include observed heterogeneity in the form of covariates-in case studied here, the holding size and country of origin. Our results confirm the presence of substantial unobserved heterogeneity supporting the application of our two estimators. The total scrapie-affected holding population in Great Britain is around 300 holdings per year. None of the covariates appear to inform the model significantly.
Resumo:
Estimation of population size with missing zero-class is an important problem that is encountered in epidemiological assessment studies. Fitting a Poisson model to the observed data by the method of maximum likelihood and estimation of the population size based on this fit is an approach that has been widely used for this purpose. In practice, however, the Poisson assumption is seldom satisfied. Zelterman (1988) has proposed a robust estimator for unclustered data that works well in a wide class of distributions applicable for count data. In the work presented here, we extend this estimator to clustered data. The estimator requires fitting a zero-truncated homogeneous Poisson model by maximum likelihood and thereby using a Horvitz-Thompson estimator of population size. This was found to work well, when the data follow the hypothesized homogeneous Poisson model. However, when the true distribution deviates from the hypothesized model, the population size was found to be underestimated. In the search of a more robust estimator, we focused on three models that use all clusters with exactly one case, those clusters with exactly two cases and those with exactly three cases to estimate the probability of the zero-class and thereby use data collected on all the clusters in the Horvitz-Thompson estimator of population size. Loss in efficiency associated with gain in robustness was examined based on a simulation study. As a trade-off between gain in robustness and loss in efficiency, the model that uses data collected on clusters with at most three cases to estimate the probability of the zero-class was found to be preferred in general. In applications, we recommend obtaining estimates from all three models and making a choice considering the estimates from the three models, robustness and the loss in efficiency. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)
Resumo:
This article is about modeling count data with zero truncation. A parametric count density family is considered. The truncated mixture of densities from this family is different from the mixture of truncated densities from the same family. Whereas the former model is more natural to formulate and to interpret, the latter model is theoretically easier to treat. It is shown that for any mixing distribution leading to a truncated mixture, a (usually different) mixing distribution can be found so. that the associated mixture of truncated densities equals the truncated mixture, and vice versa. This implies that the likelihood surfaces for both situations agree, and in this sense both models are equivalent. Zero-truncated count data models are used frequently in the capture-recapture setting to estimate population size, and it can be shown that the two Horvitz-Thompson estimators, associated with the two models, agree. In particular, it is possible to achieve strong results for mixtures of truncated Poisson densities, including reliable, global construction of the unique NPMLE (nonparametric maximum likelihood estimator) of the mixing distribution, implying a unique estimator for the population size. The benefit of these results lies in the fact that it is valid to work with the mixture of truncated count densities, which is less appealing for the practitioner but theoretically easier. Mixtures of truncated count densities form a convex linear model, for which a developed theory exists, including global maximum likelihood theory as well as algorithmic approaches. Once the problem has been solved in this class, it might readily be transformed back to the original problem by means of an explicitly given mapping. Applications of these ideas are given, particularly in the case of the truncated Poisson family.
Resumo:
Commonly used repair rate models for repairable systems in the reliability literature are renewal processes, generalised renewal processes or non-homogeneous Poisson processes. In addition to these models, geometric processes (GP) are studied occasionally. The GP, however, can only model systems with monotonously changing (increasing, decreasing or constant) failure intensities. This paper deals with the reliability modelling of failure processes for repairable systems where the failure intensity shows a bathtub-type non-monotonic behaviour. A new stochastic process, i.e. an extended Poisson process, is introduced in this paper. Reliability indices are presented, and the parameters of the new process are estimated. Experimental results on a data set demonstrate the validity of the new process.
Resumo:
The basic repair rate models for repairable systems may be homogeneous Poisson processes, renewal processes or nonhomogeneous Poisson processes. In addition to these models, geometric processes are studied occasionally. Geometric processes, however, can only model systems with monotonously changing (increasing, decreasing or constant) failure intensity. This paper deals with the reliability modelling of the failure process of repairable systems when the failure intensity shows a bathtub type non-monotonic behaviour. A new stochastic process, an extended Poisson process, is introduced. Reliability indices and parameter estimation are presented. A comparison of this model with other repair models based on a dataset is made.
Resumo:
Estimation of a population size by means of capture-recapture techniques is an important problem occurring in many areas of life and social sciences. We consider the frequencies of frequencies situation, where a count variable is used to summarize how often a unit has been identified in the target population of interest. The distribution of this count variable is zero-truncated since zero identifications do not occur in the sample. As an application we consider the surveillance of scrapie in Great Britain. In this case study holdings with scrapie that are not identified (zero counts) do not enter the surveillance database. The count variable of interest is the number of scrapie cases per holding. For count distributions a common model is the Poisson distribution and, to adjust for potential heterogeneity, a discrete mixture of Poisson distributions is used. Mixtures of Poissons usually provide an excellent fit as will be demonstrated in the application of interest. However, as it has been recently demonstrated, mixtures also suffer under the so-called boundary problem, resulting in overestimation of population size. It is suggested here to select the mixture model on the basis of the Bayesian Information Criterion. This strategy is further refined by employing a bagging procedure leading to a series of estimates of population size. Using the median of this series, highly influential size estimates are avoided. In limited simulation studies it is shown that the procedure leads to estimates with remarkable small bias.
Resumo:
A new numerical modeling of inhaled charge aerosol has been developed based on a modified Weibel's model. Both the velocity profiles (slug and parabolic flows) and the particle distributions (uniform and parabolic distributions) have been considered. Inhaled particles are modeled as a dilute dispersed phase flow in which the particle motion is controlled by fluid force and external forces acting on particles. This numerical study extends the previous numerical studies by considering both space- and image-charge forces. Because of the complex computation of interacting forces due to space-charge effect, the particle-mesh (PM) method is selected to calculate these forces. In the PM technique, the charges of all particles are assigned to the space-charge field mesh, for calculating charge density. The Poisson's equation of the electrostatic potential is then solved, and the electrostatic force acting on individual particle is interpolated. It is assumed that there is no effect of humidity on charged particles. The results show that many significant factors also affect the deposition, such as the volume of particle cloud, the velocity profile and the particle distribution. This study allows a better understanding of electrostatic mechanism of aerosol transport and deposition in human airways.
Resumo:
We review the proposal of the International Committee for Weights and Measures (Comité International des Poids et Mesures, CIPM), currently being considered by the General Conference on Weights and Measures (Conférences Générales des Poids et Mesures, CGPM), to revise the International System of Units (Le Système International d’Unitès, SI). The proposal includes new definitions for four of the seven base units of the SI, and a new form of words to present the definitions of all the units. The objective of the proposed changes is to adopt definitions referenced to constants of nature, taken in the widest sense, so that the definitions may be based on what are believed to be true invariants. In particular, whereas in the current SI the kilogram, ampere, kelvin and mole are linked to exact numerical values of the mass of the international prototype of the kilogram, the magnetic constant (permeability of vacuum), the triple-point temperature of water and the molar mass of carbon-12, respectively, in the new SI these units are linked to exact numerical values of the Planck constant, the elementary charge, the Boltzmann constant and the Avogadro constant, respectively. The new wording used expresses the definitions in a simple and unambiguous manner without the need for the distinction between base and derived units. The importance of relations among the fundamental constants to the definitions, and the importance of establishing a mise en pratique for the realization of each definition, are also discussed.
Resumo:
Statistical graphics are a fundamental, yet often overlooked, set of components in the repertoire of data analytic tools. Graphs are quick and efficient, yet simple instruments of preliminary exploration of a dataset to understand its structure and to provide insight into influential aspects of inference such as departures from assumptions and latent patterns. In this paper, we present and assess a graphical device for choosing a method for estimating population size in capture-recapture studies of closed populations. The basic concept is derived from a homogeneous Poisson distribution where the ratios of neighboring Poisson probabilities multiplied by the value of the larger neighbor count are constant. This property extends to the zero-truncated Poisson distribution which is of fundamental importance in capture–recapture studies. In practice however, this distributional property is often violated. The graphical device developed here, the ratio plot, can be used for assessing specific departures from a Poisson distribution. For example, simple contaminations of an otherwise homogeneous Poisson model can be easily detected and a robust estimator for the population size can be suggested. Several robust estimators are developed and a simulation study is provided to give some guidance on which should be used in practice. More systematic departures can also easily be detected using the ratio plot. In this paper, the focus is on Gamma mixtures of the Poisson distribution which leads to a linear pattern (called structured heterogeneity) in the ratio plot. More generally, the paper shows that the ratio plot is monotone for arbitrary mixtures of power series densities.
Resumo:
Harmonic analysis on configuration spaces is used in order to extend explicit expressions for the images of creation, annihilation, and second quantization operators in L2-spaces with respect to Poisson point processes to a set of functions larger than the space obtained by directly using chaos expansion. This permits, in particular, to derive an explicit expression for the generator of the second quantization of a sub-Markovian contraction semigroup on a set of functions which forms a core of the generator.
Resumo:
We analyse in a common framework the properties of the Voronoi tessellations resulting from regular 2D and 3D crystals and those of tessellations generated by Poisson distributions of points, thus joining on symmetry breaking processes and the approach to uniform random distributions of seeds. We perturb crystalline structures in 2D and 3D with a spatial Gaussian noise whose adimensional strength is α and analyse the statistical properties of the cells of the resulting Voronoi tessellations using an ensemble approach. In 2D we consider triangular, square and hexagonal regular lattices, resulting into hexagonal, square and triangular tessellations, respectively. In 3D we consider the simple cubic (SC), body-centred cubic (BCC), and face-centred cubic (FCC) crystals, whose corresponding Voronoi cells are the cube, the truncated octahedron, and the rhombic dodecahedron, respectively. In 2D, for all values α>0, hexagons constitute the most common class of cells. Noise destroys the triangular and square tessellations, which are structurally unstable, as their topological properties are discontinuous in α=0. On the contrary, the honeycomb hexagonal tessellation is topologically stable and, experimentally, all Voronoi cells are hexagonal for small but finite noise with α<0.12. Basically, the same happens in the 3D case, where only the tessellation of the BCC crystal is topologically stable even against noise of small but finite intensity. In both 2D and 3D cases, already for a moderate amount of Gaussian noise (α>0.5), memory of the specific initial unperturbed state is lost, because the statistical properties of the three perturbed regular tessellations are indistinguishable. When α>2, results converge to those of Poisson-Voronoi tessellations. In 2D, while the isoperimetric ratio increases with noise for the perturbed hexagonal tessellation, for the perturbed triangular and square tessellations it is optimised for specific value of noise intensity. The same applies in 3D, where noise degrades the isoperimetric ratio for perturbed FCC and BCC lattices, whereas the opposite holds for perturbed SCC lattices. This allows for formulating a weaker form of the Kelvin conjecture. By analysing jointly the statistical properties of the area and of the volume of the cells, we discover that also the cells shape heavily fluctuates when noise is introduced in the system. In 2D, the geometrical properties of n-sided cells change with α until the Poisson-Voronoi limit is reached for α>2; in this limit the Desch law for perimeters is shown to be not valid and a square root dependence on n is established, which agrees with exact asymptotic results. Anomalous scaling relations are observed between the perimeter and the area in the 2D and between the areas and the volumes of the cells in 3D: except for the hexagonal (2D) and FCC structure (3D), this applies also for infinitesimal noise. In the Poisson-Voronoi limit, the anomalous exponent is about 0.17 in both the 2D and 3D case. A positive anomaly in the scaling indicates that large cells preferentially feature large isoperimetric quotients. As the number of faces is strongly correlated with the sphericity (cells with more faces are bulkier), in 3D it is shown that the anomalous scaling is heavily reduced when we perform power law fits separately on cells with a specific number of faces.
Resumo:
Cross-bred cow adoption is an important and potent policy variable precipitating subsistence household entry into emerging milk markets. This paper focuses on the problem of designing policies that encourage and sustain milkmarket expansion among a sample of subsistence households in the Ethiopian highlands. In this context it is desirable to measure households’ ‘proximity’ to market in terms of the level of deficiency of essential inputs. This problem is compounded by four factors. One is the existence of cross-bred cow numbers (count data) as an important, endogenous decision by the household; second is the lack of a multivariate generalization of the Poisson regression model; third is the censored nature of the milk sales data (sales from non-participating households are, essentially, censored at zero); and fourth is an important simultaneity that exists between the decision to adopt a cross-bred cow, the decision about how much milk to produce, the decision about how much milk to consume and the decision to market that milk which is produced but not consumed internally by the household. Routine application of Gibbs sampling and data augmentation overcome these problems in a relatively straightforward manner. We model the count data from two sites close to Addis Ababa in a latent, categorical-variable setting with known bin boundaries. The single-equation model is then extended to a multivariate system that accommodates the covariance between crossbred-cow adoption, milk-output, and milk-sales equations. The latent-variable procedure proves tractable in extension to the multivariate setting and provides important information for policy formation in emerging-market settings