995 resultados para Plasma Calcium
Resumo:
Valganciclovir and ganciclovir are widely used for the prevention of cytomegalovirus (CMV) infection in solid organ transplant recipients, with a major impact on patients' morbidity and mortality. Oral valganciclovir, the ester prodrug of ganciclovir, has been developed to enhance the oral bioavailability of ganciclovir. It crosses the gastrointestinal barrier through peptide transporters and is then hydrolysed into ganciclovir. This review aims to describe the current knowledge of the pharmacokinetic and pharmacodynamic characteristics of this agent, and to address the issue of therapeutic drug monitoring. Based on currently available literature, ganciclovir pharmacokinetics in adult solid organ transplant recipients receiving oral valganciclovir are characterized by bioavailability of 66 +/- 10% (mean +/- SD), a maximum plasma concentration of 3.1 +/- 0.8 mg/L after a dose of 450 mg and of 6.6 +/- 1.9 mg/L after a dose of 900 mg, a time to reach the maximum plasma concentration of 3.0 +/- 1.0 hours, area under the plasma concentration-time curve values of 29.1 +/- 5.3 mg.h/L and 51.9 +/- 18.3 mg.h/L (after 450 mg and 900 mg, respectively), apparent clearance of 12.4 +/- 3.8 L/h, an elimination half-life of 5.3 +/- 1.5 hours and an apparent terminal volume of distribution of 101 +/- 36 L. The apparent clearance is highly correlated with renal function, hence the dosage needs to be adjusted in proportion to the glomerular filtration rate. Unexplained interpatient variability is limited (18% in apparent clearance and 28% in the apparent central volume of distribution). There is no indication of erratic or limited absorption in given subgroups of patients; however, this may be of concern in patients with severe malabsorption. The in vitro pharmacodynamics of ganciclovir reveal a mean concentration producing 50% inhibition (IC(50)) among CMV clinical strains of 0.7 mg/L (range 0.2-1.9 mg/L). Systemic exposure of ganciclovir appears to be moderately correlated with clinical antiviral activity and haematotoxicity during CMV prophylaxis in high-risk transplant recipients. Low ganciclovir plasma concentrations have been associated with treatment failure and high concentrations with haematotoxicity and neurotoxicity, but no formal therapeutic or toxic ranges have been validated. The pharmacokinetic parameters of ganciclovir after valganciclovir administration (bioavailability, apparent clearance and volume of distribution) are fairly predictable in adult transplant patients, with little interpatient variability beyond the effect of renal function and bodyweight. Thus ganciclovir exposure can probably be controlled with sufficient accuracy by thorough valganciclovir dosage adjustment according to patient characteristics. In addition, the therapeutic margin of ganciclovir is loosely defined. The usefulness of systematic therapeutic drug monitoring in adult transplant patients therefore appears questionable; however, studies are still needed to extend knowledge to particular subgroups of patients or dosage regimens.
Resumo:
Newly synthesized glucose transporter 4 (GLUT4) enters into the insulin-responsive storage compartment in a process that is Golgi-localized γ-ear-containing Arf-binding protein (GGA) dependent, whereas insulin-stimulated translocation is regulated by Akt substrate of 160 kDa (AS160). In the present study, using a variety of GLUT4/GLUT1 chimeras, we have analyzed the specific motifs of GLUT4 that are important for GGA and AS160 regulation of GLUT4 trafficking. Substitution of the amino terminus and the large intracellular loop of GLUT4 into GLUT1 (chimera 1-441) fully recapitulated the basal state retention, insulin-stimulated translocation, and GGA and AS160 sensitivity of wild-type GLUT4 (GLUT4-WT). GLUT4 point mutation (GLUT4-F5A) resulted in loss of GLUT4 intracellular retention in the basal state when coexpressed with both wild-type GGA and AS160. Nevertheless, similar to GLUT4-WT, the insulin-stimulated plasma membrane localization of GLUT4-F5A was significantly inhibited by coexpression of dominant-interfering GGA. In addition, coexpression with a dominant-interfering AS160 (AS160-4P) abolished insulin-stimulated GLUT4-WT but not GLUT4-F5A translocation. GLUT4 endocytosis and intracellular sequestration also required both the amino terminus and large cytoplasmic loop of GLUT4. Furthermore, both the FQQI and the SLL motifs participate in the initial endocytosis from the plasma membrane; however, once internalized, unlike the FQQI motif, the SLL motif is not responsible for intracellular recycling of GLUT4 back to the specialized compartment. Together, we have demonstrated that the FQQI motif within the amino terminus of GLUT4 is essential for GLUT4 endocytosis and AS160-dependent intracellular retention but not for the GGA-dependent sorting of GLUT4 into the insulin-responsive storage compartment.
Resumo:
Indirect evidence suggests that activity of pyruvate dehydrogenase (PDH) influences recovery of the myocardium after transient ischemia. The present study examined the relationship between postischemic injury and activity of PDH and the role of mitochondrial calcium uptake for observed changes in PDH activity. Isovolumically beating isolated rat hearts perfused with erythrocyte-enriched buffer containing glucose, palmitate, and insulin were submitted to either 20 or 35 min of no-flow ischemia. After 20 min of no-flow ischemia, hearts exhibited complete recovery of developed left ventricular pressure (DLVP). The proportion of myocardial PDH in the active state was modestly increased to 38% (compared with 13% in control hearts) without a change in glucose oxidation. In contrast, in hearts subjected to 35 min of no-flow ischemia (which exhibited poor recovery of DLVP), there was marked stimulation of glucose oxidation (+460%; P < 0.01) and pronounced increase in the active fraction of PDH to 72% (P < 0.01). Glycolytic flux was not significantly altered. Ruthenium red (6 microM) completely abolished the activation of PDH and the increase in glucose oxidation. The results indicate that variable stimulation of glucose oxidation during reperfusion is related to different degrees of activation of PDH, which depends on the severity of the ischemic injury. Activation of PDH seems to be mediated by myocardial calcium uptake.
Resumo:
Objective: Bone cements and substitutes are commonly used in surgery to deliver antibiotics locally. The objective of this study was to assess the systemic absorption and disposition of vancomycin in patients treated with active calcium sulfate bone filler and to predict systemic concentrations under various conditions. Method: 277 blood samples were taken from 42 patients receiving vancomycin in bone cement during surgery. Blood samples were collected from 3h to 10 days after implantation. Vancomycin was measured by immunoenzymatic assay. Population pharmacokinetic (PK) analysis was performed using NONMEM to assess average estimates and variability of PK parameters. Based on the final model, simulations with various doses and renal function levels were performed. Results: The patients were 64 ± 20 years old, their body weight was 81 ± 22 kg and Cockcroft-Gault creatinine clearance (CLcr) 98 ± 55 mL/min. Vancomycin doses ranged from 200 mg to 6000 mg and implantation sites were hip (n=16), tibia (10) or others (16). Concentration profiles remained low and consistent with absorption rate-limited first-order release, while showing prominent variability. Mean clearance (CL) was 3.87 L/h (CV 35%), absorption rate constant (ka) 0.004 h-1 (66%) and volume of distribution (V) 9.5 L. Simulations with up to 8000 mg vancomycin implant showed systemic concentrations exceeding 20 mg/L for 3.5 days in 43% of the patients with CLcr 15 mL/min, whereas 7% of the patients with normal renal function had a concentration above 20 mg/L for 1.1 days. Subtherapeutic concentrations (0.4-4 mg/L) were predicted during a median of 22 days in patients with normal renal function and 4000 mg vancomycin implant, with limited influence of dose or renal function. Conclusion: Vancomycin-laden calcium sulfate implant does not raise toxicity concern. Selection of resistant bacteria, such as Enterococcus and Staphylococcus species, might however be a concern, as simulations show persistent subtherapeutic systemic concentrations during 3 to 4 weeks in these patients.
Resumo:
A lysimeter experiment was carried out with sugarcane aiming to evaluate the leaching of nitrogen derived from either urea (15N) or the soil/sugarcane crop residues. The leaching of K+, Ca2+, and Mg2+ was also evaluated. The experiment was a factorial 2x4. The influencing factors were: firstly, the differential addition of two kinds of sugarcane remains to the soil, simulating conditions of cane- plantation renewal after the cane crop harvest, with and without previous straw removal by burning; secondly, four doses of N: 0, 30, 60, and 90 kg ha-1. During the experimental period the total volume of water received by the sugarcane-soil system was 2,015 mm, with 1,255 mm as precipitation and 760 mm as irrigation. The loss of N by leaching from the fertilizer (15N) was not detected. In the first three weeks the largest losses of N by leaching occurred, originating from the soil/sugarcane remains-N. The mean of leached N during the experimental period of 11 months was of 4.5 kg ha-1. The mean losses of K+, Ca2+, and Mg2+ were of 13, 320 and 80 kg ha-1, respectively.
Resumo:
AIM: Total imatinib concentrations are currently measured for the therapeutic drug monitoring of imatinib, whereas only free drug equilibrates with cells for pharmacological action. Due to technical and cost limitations, routine measurement of free concentrations is generally not performed. In this study, free and total imatinib concentrations were measured to establish a model allowing the confident prediction of imatinib free concentrations based on total concentrations and plasma proteins measurements. METHODS: One hundred and fifty total and free plasma concentrations of imatinib were measured in 49 patients with gastrointestinal stromal tumours. A population pharmacokinetic model was built up to characterize mean total and free concentrations with inter-patient and intrapatient variability, while taking into account α1 -acid glycoprotein (AGP) and human serum albumin (HSA) concentrations, in addition to other demographic and environmental covariates. RESULTS: A one compartment model with first order absorption was used to characterize total and free imatinib concentrations. Only AGP influenced imatinib total clearance. Imatinib free concentrations were best predicted using a non-linear binding model to AGP, with a dissociation constant Kd of 319 ng ml(-1) , assuming a 1:1 molar binding ratio. The addition of HSA in the equation did not improve the prediction of imatinib unbound concentrations. CONCLUSION: Although free concentration monitoring is probably more appropriate than total concentrations, it requires an additional ultrafiltration step and sensitive analytical technology, not always available in clinical laboratories. The model proposed might represent a convenient approach to estimate imatinib free concentrations. However, therapeutic ranges for free imatinib concentrations remain to be established before it enters into routine practice.
Resumo:
AIMS: The plasma levels of either brain natriuretic peptide (BNP) or the N-terminal fragment of the prohormone (NT-proBNP) have recently gained extreme importance as markers of myocardial dysfunction. Patients with type 2 diabetes are at high risk of developing cardiovascular complications. This study was aimed to assess whether plasma NT-proBNP levels are at similar levels in type 2 diabetics with or without overt cardiovascular diseases. METHODS: We assayed plasma NT-proBNP in 54 type 2 diabetics, 27 of whom had no overt macro- and/or microvascular complications, while the remaining ones had either or both. The same assay was carried out in 38 healthy control subjects age and sex matched as a group with the diabetics. RESULTS: Plasma NT-proBNP was higher in diabetics (median 121 pg/ml, interquartile range 50-240 pg/ml, ) than in those without complications (37 pg/ml, 21-54 pg/ml, P<0.01). Compared with the controls (55 pg/ml, 40-79 pg/ml), only diabetics with vascular complications had significantly increased plasma NT-proBNP levels (P<0.001). In the diabetics, coronary heart disease and nephropathy (defined according to urinary excretion of albumin) were each independently associated with elevated values of plasma NT-proBNP. CONCLUSIONS: In type 2 diabetes mellitus, patients with macro- and/or micro-vascular complications exhibit an elevation of plasma NT-proBNP levels compared to corresponding patients with no evidence of vascular disease. The excessive secretion of this peptide is independently associated with coronary artery disease and overt nephropathy. The measurement of circulating NT-proBNP concentration may therefore be useful to screen for the presence of macro- and/or microvascular disease.
Resumo:
BACKGROUND: PCSK9 (Proprotein Convertase Subtilisin Kexin type 9) is a circulating protein that promotes hypercholesterolemia by decreasing hepatic LDL receptor protein. Under non interventional conditions, its expression is driven by sterol response element binding protein 2 (SREBP2) and follows a diurnal rhythm synchronous with cholesterol synthesis. Plasma PCSK9 is associated to LDL-C and to a lesser extent plasma triglycerides and insulin resistance. We aimed to verify the effect on plasma PCSK9 concentrations of dietary interventions that affect these parameters. METHODS: We performed nutritional interventions in young healthy male volunteers and offspring of type 2 diabetic (OffT2D) patients that are more prone to develop insulin resistance, including: i) acute post-prandial hyperlipidemic challenge (n=10), ii) 4 days of high-fat (HF) or high-fat/high-protein (HFHP) (n=10), iii) 7 (HFruc1, n=16) or 6 (HFruc2, n=9) days of hypercaloric high-fructose diets. An acute oral fat load was also performed in two patients bearing the R104C-V114A loss-of-function (LOF) PCSK9 mutation. Plasma PCSK9 concentrations were measured by ELISA. For the HFruc1 study, intrahepatocellular (IHCL) and intramyocellular lipids were measured by 1H magnetic resonance spectroscopy. Hepatic and whole-body insulin sensitivity was assessed with a two-step hyperinsulinemic-euglycemic clamp (0.3 and 1.0 mU.kg-1.min-1). FINDINGS: HF and HFHP short-term diets, as well as an acute hyperlipidemic oral load, did not significantly change PCSK9 concentrations. In addition, post-prandial plasma triglyceride excursion was not altered in two carriers of PCSK9 LOF mutation compared with non carriers. In contrast, hypercaloric 7-day HFruc1 diet increased plasma PCSK9 concentrations by 28% (p=0.05) in healthy volunteers and by 34% (p=0.001) in OffT2D patients. In another independent study, 6-day HFruc2 diet increased plasma PCSK9 levels by 93% (p<0.0001) in young healthy male volunteers. Spearman's correlations revealed that plasma PCSK9 concentrations upon 7-day HFruc1 diet were positively associated with plasma triglycerides (r=0.54, p=0.01) and IHCL (r=0.56, p=0.001), and inversely correlated with hepatic (r=0.54, p=0.014) and whole-body (r=-0.59, p=0.0065) insulin sensitivity. CONCLUSIONS: Plasma PCSK9 concentrations vary minimally in response to a short term high-fat diet and they are not accompanied with changes in cholesterolemia upon high-fructose diet. Short-term high-fructose intake increased plasma PCSK9 levels, independent on cholesterol synthesis, suggesting a regulation independent of SREBP-2. Upon this diet, PCSK9 is associated with insulin resistance, hepatic steatosis and plasma triglycerides.
Resumo:
Experimental and theoretical investigations for growth of silicon nanoparticles (4 to 14 nm) in radio frequency discharge were carried out. Growth processes were performed with gas mixtures of SiH4 and Ar in a plasma chemical reactor at low pressure. A distinctive feature of presented kinetic model of generation and growth of nanoparticles (compared to our earlier model) is its ability to investigate small"critical" dimensions of clusters, determining the rate of particle production and taking into account the influence of SiH2 and Si2Hm dimer radicals. The experiments in the present study were extended to high pressure (≥20 Pa) and discharge power (≥40 W). Model calculations were compared to experimental measurements, investigating the dimension of silicon nanoparticles as a function of time, discharge power, gas mixture, total pressure, and gas flow.
Resumo:
Capillary electrophoresis has drawn considerable attention in the past few years, particularly in the field of chiral separations because of its high separation efficiency. However, its routine use in therapeutic drug monitoring is hampered by its low sensitivity due to a short optical path. We have developed a capillary zone electrophoresis (CZE) method using 2mM of hydroxypropyl-β-cyclodextrin as a chiral selector, which allows base-to-base separation of the enantiomers of mianserin (MIA), desmethylmianserin (DMIA), and 8-hydroxymianserin (OHMIA). Through the use of an on-column sample concentration step after liquid-liquid extraction from plasma and through the presence of an internal standard, the quantitation limits were found to be 5 ng/mL for each enantiomer of MIA and DMIA and 15 ng/mL for each enantiomer of OHMIA. To our knowledge, this is the first published CE method that allows its use for therapeutic monitoring of antidepressants due to its sensitivity down to the low nanogram range. The variability of the assays, as assessed by the coefficients of variation (CV) measured at two concentrations for each substance, ranged from 2 to 14% for the intraday (eight replicates) and from 5 to 14% for the interday (eight replicates) experiments. The deviations from the theoretical concentrations, which represent the accuracy of the method, were all within 12.5%. A linear response was obtained for all compounds within the range of concentrations used for the calibration curves (10-150 ng/mL for each enantiomer of MIA and DMIA and 20-300 ng/mL for each enantiomer of OHMIA). Good correlations were calculated between [(R) + (S)]-MIA and DMIA concentrations measured in plasma samples of 20 patients by a nonchiral gas chromatography method and CZE, and between the (R)- and (S)-concentrations of MIA and DMIA measured in plasma samples of 37 patients by a previously described chiral high-performance liquid chromatography method and CZE. Finally, no interference was noted from more than 20 other psychotropic drugs. Thus, this method, which is both sensitive and selective, can be routinely used for therapeutic monitoring of the enantiomers of MIA and its metabolites. It could be very useful due to the demonstrated interindividual variability of the stereoselective metabolism of MIA.
Resumo:
Objective: To compare effects of a non-renin-angiotensin system (RAS) blocker, using a CCB, or a RAS blocker, using an ARB regimen on the arterial stiffness reduction in postmenopausal hypertensive women. Methods: In this prospective study, a total of 125 hypertensive women (age: 61.4_6 yrs; 98% Caucasian; BW: 71.9_14 kg; BMI: 27.3_5 kg/m2; SBP/ DBP: 158_11/92_9 mmHg) were randomized between ARB (valsartan 320mg_HCTZ) and CCB (amlodipine 10mg _ HCTZ). The primary outcome was carotid-femoral pulse wave velocity (PWV) changes after 38 weeks of treatment. Results: There were no significant differences in baseline demographic data between the two groups. Both treatments effectively lowered BP at the end of the study with similar (p>0.05) reductions in the valsartan (_22.9/_10.9 mmHg) and amlodipine based (_25.2/_11.7 mmHg) treatment groups. Despite a lower (p<0.05 for DBP) central SBP/DBP in the CCB group (_19.2/_10.3 mmHg) compared to the valsartan group (_15.7/_7.6 mmHg) at week 38, a similar reduction in carotid-femoral PWV (_1.7 vs _1.9 m/sec; p>0.05) was observed between both groups. The numerically larger BP reduction observed in the CCB group was associated with a much higher incidence of peripheral edema (77% vs 14%) than the valsartan group. Conclusion: In summary, BP lowering in postmenopausal women led to a reduction in arterial stiffness assessed by PWV measurement. Both regimens reduced PWV at 38 weeks of treatment to a similar degree, despite differences in BP lowering suggesting that the effect of RAS blockade to influence PWV may partly be independent of BP.
Resumo:
The bone marrow constitutes a favorable environment for long-lived antibody-secreting plasma cells, providing blood-circulating antibody. Plasma cells are also present in mucosa-associated lymphoid tissue (MALT) to mediate local frontline immunity, but how plasma cell survival there is regulated is not known. Here we report that a proliferation-inducing ligand (APRIL) promoted survival of human upper and lower MALT plasma cells by upregulating expression of the antiapoptotic proteins bcl-2, bcl-xL, and mcl-1. The in situ localization of APRIL was consistent with such a prosurvival role in MALT. In upper MALT, tonsillar epithelium produced APRIL. Upon infection, APRIL production increased considerably when APRIL-secreting neutrophils recruited from the blood infiltrated the crypt epithelium. Heparan sulfate proteoglycans (HSPGs) retained secreted APRIL in the subepithelium of the infected zone to create APRIL-rich niches, wherein IgG-producing plasma cells accumulated. In lower MALT, neutrophils were the unique source of APRIL, giving rise to similar niches for IgA-producing plasmocytes in villi of lamina propria. Furthermore, we found that mucosal humoral immunity in APRIL-deficient mice is less persistent than in WT mice. Hence, production of APRIL by inflammation-recruited neutrophils may create plasma cell niches in MALT to sustain a local antibody production.