999 resultados para Plantar force


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Frequency Modulated - Atomic Force Microscope (FM-AFM) is apowerful tool to perform surface investigation with true atomic resolution. The controlsystem of the FM-AFM must keep constant both the frequency and amplitude ofoscillation of the microcantilever during the scanning process of the sample. However,tip and sample interaction forces cause modulations in the microcantilever motion.A Phase-Locked Loop (PLL) is used as a demodulator and to generate feedback signalto the FM-AFM control system. The PLL performance is vital to the FM-AFMperformace since the image information is in the modulated microcantilever motion.Nevertheless, little attention is drawn to PLL performance in the FM-AFM literature.Here, the FM-AFM control system is simulated, comparing the performancefor di erent PLL designs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the last 30 years the Atomic Force Microscopy became the most powerful tool for surface probing in atomic scale. The Tapping-Mode Atomic Force Microscope is used to generate high quality accurate images of the samples surface. However, in this mode of operation the microcantilever frequently presents chaotic motion due to the nonlinear characteristics of the tip-sample forces interactions, degrading the image quality. This kind of irregular motion must be avoided by the control system. In this work, the tip-sample interaction is modelled considering the Lennard-Jones potentials and the two-term Galerkin aproximation. Additionally, the State Dependent Ricatti Equation and Time-Delayed Feedback Control techniques are used in order to force the Tapping-Mode Atomic Force Microscope system motion to a periodic orbit, preventing the microcantilever chaotic motion

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent research seeking to elucidate the possible effects of different types of physical training on the morphological adaptations of skeletal muscle. Although it is relatively easy to study the effects of exercise training in humans, such research becomes limited due to the invasive nature of the biopsies and the risk inherent in the use of human subjects. Thus, the application of animal models of training has been considered an appropriate strategy for the study of muscular adaptations in response to exercise. Objective: This study used a rodent model to determine the possible effects of aerobic and strength training on the CSA of fibers of the plantaris muscle. Methods: 24 male Wistar rats (80 to 120 days, 250 to 400 g) were randomly divided into 3 groups: aerobic training (TA, n = 8), strength training (ST, n = 8) and control (CO, n = 8). The animals in groups TA and TF were subjected to 8 weeks of training, while the animals of group C remained without any stimulus from start to finish the training period. At the end of the experiment, the animals were sacrificed and right plantar muscles dissected and removed. For morphological and morphometric analysis of muscle fibers was performed staining was performed H.E. Results: There was no significant difference in initial body weight between experimental groups. After 8 weeks of training, the TA group showed a significant reduction in final body weight, compared to CO and TF groups. With respect to the CSA of fibers of the plantaris muscle, no significant difference between the groups CO and TA. On the other hand, the strength training promoted a significant increase in AST of the group TF in compared with the groups CO and TA. Conclusion: Strength training used in this study promoted an increase in CSA of fibers of the plantaris muscle. On the other hand, animals submitted to aerobic training showed no changes in the CSA of the fibers, however, there was reduction in PC animals. The data strongly suggest the use of animal model of strength training used in this study as an appropriate strategy for studying the hypertrophic response of skeletal muscle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)