979 resultados para Photochemical fixation
Resumo:
This article provides an overview of the current status of research involving the photochemical behavior of transition metal complexes in the following important areas: medicine, biology and materials science including some of the experiences of the writer. Coverage is selective, generally focusing on highlights and the most recent developments, with the broad aim of showing the interdisciplinary field of inorganic photochemistry.
Resumo:
Edible films are thin materials based on biopolymers and food additives. The aim of this work is a review on the application of dynamic mechanical analysis in edible film technology. After a brief review of the linear visco-elasticity theory, a description of some practical aspects related to dynamic mechanical analysis, such as sample fixation and sample dehydration during analysis and types and modes of tests are presented. Thus, the use of temperature scanning analysis for glass transition and for plasticizer-biopolymer compatibility studies and frequency scanning tests, less common in edible film technology, are critically reviewed.
Resumo:
Because of technical principles, samples to be observed with electron microscopy need to be fixed in a chemical process and exposed to vacuum conditions that can produce some changes in the morphology of the specimen. The aim of this work was to obtain high-resolution images of the fresh articular cartilage surface with an environmental scanning electron microscope (ESEM), which is an instrument that permits examination of biological specimens without fixation methods in a 10 Torr chamber pressure, thus minimizing the risk of creating artifacts in the structure. Samples from weight-bearing areas of femoral condyles of New Zealand white rabbits were collected and photographed using an ESEM. Images were analyzed using a categorization based in the Jurvelin classification system modified by Hong and Henderson. Appearance of the observed elevations and depressions as described in the classification were observed, but no fractures or splits of cartilage surface, thought to be artifacts, were detected. The ESEM is a useful tool to obtain images of fresh articular cartilage surface appearance without either employing fixation methods or exposing the specimen to extreme vacuum conditions, reducing the risk of introducing artifacts within the specimen. For all these reasons it could become a useful tool for quality control of the preservation process of osteochondral allografting in a bank of musculoskeletal tissues.
Resumo:
The legislative reforms in university matters driven in recent years, beyond the provoked controversies, offer to universities the possibility to develop a new model in line with the European environment, focusing on quality aims and adapting to the socioeconomic current challenges. A new educational model centered on the student, on the formation of specific and transverse competitions, on the improvement of the employability and the access to the labor market, on the attraction and fixation of talent, is an indispensable condition for the effective social mobility and for the homogeneous development of a more responsible and sustainable socioeconomic and productive model
Resumo:
The assembly of a photochemical reactor with six fluorescent lamps, used for photopolymerizations is described. This chamber presents a mobile support, allowing the placement of samples at different heights and a safety lock that interrupts the radiation, if it is opened during operation. The mirrored internal walls avoid the dispersion and non-uniform distribution of light. There is no high heating because the own character of the used lamps. All parts could be purchased in commerce with less than U$ 150,00. This reactor was successfully used for monolithic stationary phase photopolymerization.
Resumo:
Mixtures of α-Santonin and various solvents were irradiated by either high or low pressure mercury lamps. The photochemical reactions afforded lumisantonin (11) (76% in acetonitrile), (3S,3aS,9bS)-3,6,6-trimethyl-3,3a,4,5-tetrahydronafto[1,2-b]furan-2,7(6H,9bH)dione (12) (100% in acetonitrile), 10α-acetoxy-3-oxo-1,7αH,6,11βH-guaia-4-en-6,12-olide (8) (26% in acetic acid), 10α-hydroxy-3-oxo-1,7αH,6,11βH-guaia-4-en-6,12-olide (10) (32%) and (E)-3-((3S,3aS,7aS)-3-methyl-2-oxo-6-(propan-2-ylidene)hexahydrobenzofuran-7-(7aH)-ylidene)propanoic acid (9) (44%) (in water/ acetic acid 1:1, v/v). Lactone 12 was also prepared by irradiation of lumisantonin in diethyl ether. Lactones 8 and 10 were converted, respectively, into the 10α-acetoxy-3β-hydroxy-1,7αH,6,11βH-guaia-4-en-6,12-olide (13) (87%) and 3β,10α-dihydroxy-1,7αH,6,11βH-guaia-4-en-6,12-olide (14) (75%) by sodium borohydride reduction. The effects of the compounds on the development of radicle of Sorghum bicolor and Cucumis sativus were evaluated.
Resumo:
The oxidation of arsenic (As(III) to As(V)) in water samples was performed by heterogeneous photocatalysis using a TiO2 film immobilized inside a photochemical reactor. After oxidation, As(V) was removed from the water samples by coprecipitation with ferric sulfate. The final conditions of oxidation and arsenic removal (TiO2 film prepared with a suspension: 10% (w/v); pH: 7.0; oxidation time: 30 min and Fe3+ concentration: 50 mg L-1) were applied in natural water samples which were supplemented with 1.0 mg L-1 of As(III) to verify the influence of the matrix. After treatment, more than 99% of arsenic was removed from the water.
Resumo:
The seasonal behavior of NO2 concentration shows a maximum occurring during sugarcane crop and this suggests that the biomass burning is significant source of emission at this time of the year. Along the day, the variation of the NO2 showed a decrease during the increased sunlight and an increase thereafter, caused by occurrence of photochemical reactions. Measurements of NO2 were done inside of residential and industrial kitchens and also inside of a parking garage located in the underground of a supermarket building. The indoor concentrations of NO2 were significantly higher than the concentrations of the external atmosphere and it shows the importance of the sources of internal emissions.
Resumo:
In this work the preparation and characterization of a supported catalyst intended for degradation of reactive dyes by Fenton-like processes is described. The photocatalyst was prepared by immobilization of Fe3+ into the molecular sieve (4A type) surface and characterized by x-ray diffractometry and infrared, Mössbauer and EPR spectroscopy. The solid containing 0.94% (w/w) of ferric ions was used in degradation studies of aqueous reactive-dyes samples with really promissory results. Generally, Vis-assisted photochemical processes leads to almost total decolorization of all tested dyes at reaction times lower than 30 min. It was also observed that the iron-molecular sieve matrix can be reused.
Resumo:
Positive photoresists are widely used in lithographic process in microelectronics and in optics for the fabrication of relief components. With the aim of identifying molecular modifications among positive photoresists unexposed and previously exposed to ultraviolet light the electron stimulated ion desorption technique coupled to time-of-flight mass spectrometry was employed in the study of the AZ-1518 photoresist. Mass spectra were obtained as a function of the electron beam energy, showing specific changes related to the photochemical decomposition of the photoresist. This reinforces the applicability of the technique to investigate and characterize structural changes in photosensitive materials.
Resumo:
Several problems are involved the treatment plants of textile effluents, mainly the low efficiency of color removal. This paper presents an alternative of post-treatment by UV/H2O2 process, for color removal in biologically treated textile effluents. The tests were performed in a photochemical reactor and samples were taken at different times to perform analyses. Using 250 mgH2O2.L-1, 96% removal of color was verified, indicating the dyes degradation. A reduction of 84% of aromatics compounds, 90% of TSS removal, and a further reduction of the organic fraction were observed, demonstrating that the process is effective as a post-treatment of effluents from textile industries.
Resumo:
A continuous photochemical treatment system was developed for aiming the treatment of aqueous solutions containing relevant micro-pollutants (microcystin-LR, sulfamethoxazole and 17-b estradiol). The continuous photo-Fenton process provided high degradation efficiency. However, contact time between samples and the irradiated region is short relative to total treatment time, indicating that observed changes are predominantly due to the Fenton process. Higher degradation efficiency was observed in systems operated using two treatment cycles, the first involving a batch Fenton process and the second a continuous photo-Fenton treatment.
Resumo:
Shadow masks are used in manufacturing processes for electro-optic devices to transfer patterns with different shapes and dimensions. For fabrication of organic based devices, shadow masks should be made of materials stable against organic solvents, high temperature, and robust, remaining unchanged after multiple cycles of use and fixation. Thus, stainless steel is suitable for shadow masks. A simple, cheap and quick method of obtaining shadow masks by electrochemical corrosion of stainless steel is reported. The shadow mask was used to evaporate cathode material to obtain an organic light emitting diode with active area of 9 mm². This device exhibited a turn-on voltage of 5 V and luminance of 14 cd/m².
Resumo:
In this work, we present an efficient and inexpensive device for undergraduate chemistry classes aimed at teaching and learning the photolytic synthesis concepts. A photochemical reactor was tested for the synthesis of the organometallic compound enneacarbonyldiiron from iron pentacarbonyl in acetic acid, and its formation evidenced by FTIR analysis. Although similar devices have been described in other studies, none of these offered the simplicity, low cost, class-compatible reaction times and good yields afforded by the procedure reported herein.
Resumo:
Ultraviolet radiation corresponds to a fraction of electromagnetic radiation, covering wavelengths between 1 and 400 nm. Methods based on UV irradiation have become popular because it is possible to treat samples simply by applying energy, avoiding procedures that require the use of toxic substances, thus contributing to the development of Green Chemistry. This study aimed to assess the main applications of UV radiation reported in the literature and thoroughly described the construction of an alternative and low-cost photochemical reactor to be used for the pretreatment of samples in the laboratory. The use of this new photochemical reactor in the clean-up of milk samples for spectrofluorimetric measurements was also reported.