999 resultados para Phosphorus determination
Resumo:
Aims: To assess the diversity of antibiotic-resistant bacteria and their resistance genes in typical maricultural environments. Methods nand Results: Multidrug-resistant bacteria and resistance genes from a mariculture farm of China were analysed via cultivation and polymerase chain reaction (PCR) methods. Oxytetracycline (OTC)-resistant bacteria were abundant in both abalone and turbot rearing waters, accounting for 3.7% and 9.9% of the culturable microbes. Multidrug resistance was common, with simultaneous resistance to OTC, chloramphenicol and ampicillin the most common resistance phenotype. 16S rDNA sequence analyses indicate that the typical resistant isolates belonged to marine Vibrio, Pseudoalteromonas or Alteromonas species, with resistance most common in Vibrio splendidus isolates. For OTC resistance, tet(A), tet(B) and tet(M) genes were detected in some multidrug-resistant isolates, with tet(D) being the most common molecular determinant. For chloramphenicol resistance, cat II was common, and floR was also detected, especially in marine Pseudoalteromonas strains. Conclusions: There is the risk of multidrug-resistant bacteria contamination in mariculture environments and marine Vibrio and Pseudoalteromonas species serve as reservoirs of specific antibiotic resistance determinants. Significance and Impact of the Study: This paper and similar findings from Korea and Japan indicate the potential for widespread distribution of antibiotic resistance genes in mariculture environments from the East Asian region of the world.
Resumo:
The lancelet (amphioxus) embryo develops from a miolecithal egg and starts gastrulation when it is approximately 400 cells in size, in a fashion similar to that of some non-chordate deuterostomes. Throughout this type of gastrulation, the embryo develops characteristics such as the notochord and hollow nerve cord that commonly appear in chordates. beta-Catenin is an important factor in initiating body patterning. The behavior and developmental pattern of this protein in early lancelet development was examined in this study. Cytoplasmic beta-catenin was localized to the animal pole after fertilization and then was incorporated asymmetrically into the blastomeres during the first cleavage. Asymmetric distribution was observed at least until the 32-cell stage. The first nuclear localization was at the 64-cell stage, and involved all of the cells. At the initial gastrula stage, however, concentrated beta-catenin was found on the dorsal side. LiCl treatment affected the asymmetric pattern of beta-catenin during the first cleavage. LiCl also changed distribution of nuclear beta-catenin at the initial gastrula stage: distribution extended to cells on the animal side. Apparently associated with this change, expression domains of goosecoid, lhx3 and otx also changed to a radially symmetric pattern centered at the animal pole. However, LiCl-treated embryos were able to establish embryonic polarity. The present study suggests that in the lancelet embryo, polarity determination is independent of dorsal morphogenesis.
Resumo:
The extracts obtained from 28 species of marine algae were evaluated for their antioxidant activity (AA) versus the positive controls butylated hydroxytoluene (BHT), gallic acid (GA), and ascorbic acid (AscA). Most of the tested samples displayed antioxidant activity to various degrees. Among them, the extract of Symphyocladia latiuscula exhibited the strongest AA, which was comparable to BHT, GA, and AscA in radical scavenging activity, as shown in the DPPH (alpha,alpha-diphenyl-beta-picrylhydrazyl) assay, and higher than those of the positive controls in beta-carotene-linoleate assay system. In addition, the ethyl acetate-soluble fraction isolated from the crude extract of S. latiuscula exhibited the highest antioxidant activity in both assay systems. This fraction was further fractionated into seven subfractions (F1-F7) by vacuum liquid chromatography (VLC). F1 and F4 were found to be the most effective subfractions in scavenging DPPH radical assay and in the beta-carotene-linoleate assay, respectively. The total phenolic content (TPC) and reducing power (RP) for all of the extracts, fractions, and subfractions (F1-F7) were also determined. The TPC of the 28 extracts ranged from 0.10 to 8.00 gallic acid equivalents (mg/g seaweed dry weight) while the RP ranged from 0.07 to 11.60 ascorbic acid equivalents (mg center dot g(-1) seaweed dry weight). Highly positive relationships between AA and TPC as well as between AA and RP were found for the extracts and fractions, while for the subfractions F1-F7 only weak or no such relations were found. The results obtained from this study indicate that further analysis is needed of those marine algal species that contain the most antioxidant activity in order to identify the active principles.
Resumo:
According to the specific property of respective phases in copper ore, optimal extracting condition for, tour phases of copper with five infusion was examined. After a series of experiments, for example, different weight Of sample, artificial mixed single phases sample and repeated experiment, the extracting ratio constants foil all phases in different infusions were obtained. The mathematical model which is on the basis of the stable extracting constant is established. Based on the purpose-control genetic algorithms, we only need to determine the total copper in the sample in different infusions under the selected condition, then the value of respective phase could be calculated. The-relative standard deviation are (%) free oxidized copper phase:1.5, conjunction oxidized copper phase: 17.6,, secondary copper sulfide phase: 1.9, primary copper sulfide phase : 2.7,total copper: 0.8.
Resumo:
An off-line chelation system combined with ICP-MS technique was developed for the quantitative determination of trace elements in seawater, namely V, Co, Ni, Cu, Zn, Mo, Cd, Pb, U and rare earth elements(REEs). The system was built based on an ion chromatography equipped with MetPac((R)) CC-I chelation columns which had a strong selective chelation to these target elements within a pH range 5.2-5.6. Acidified seawater samples and NH4Ac(2 mol/L) were blended to meet suitable pH before being injected into the chelation column, thus target elements were retained while alkali and alkaline metals were excluded. Then chelated elements were eluted by HNO3 (1 mol/L) and samples were collected for ICP-MS analysis. Varying the ratio of input( gen. 200 mL) to output( gen. 5 mL), the target elements which were concentrated as 40 times as their concentrations were far beyond instrumental quantification limits. At last, a certificated seawater CASS-4 was introduced and our detected values were in good agreement with those certified values.
Resumo:
Fractional energy losses of waves due to wave breaking when passing over a submerged bar are studied systematically using a modified numerical code that is based on the high-order Boussinesq-type equations. The model is first tested by the additional experimental data, and the model's capability of simulating the wave transformation over both gentle slope and steep slope is demonstrated. Then, the model's breaking index is replaced and tested. The new breaking index, which is optimized from the several breaking indices, is not sensitive to the spatial grid length and includes the bottom slopes. Numerical tests show that the modified model with the new breaking index is more stable and efficient for the shallow-water wave breaking. Finally, the modified model is used to study the fractional energy losses for the regular waves propagating and breaking over a submerged bar. Our results have revealed that how the nonlinearity and the dispersion of the incident waves as well as the dimensionless bar height (normalized by water depth) dominate the fractional energy losses. It is also found that the bar slope (limited to gentle slopes that less than 1:10) and the dimensionless bar length (normalized by incident wave length) have negligible effects on the fractional energy losses.
Resumo:
The annual cycle of nutrient-phytoplankton dynamics in Bohai Sea (BS) is simulated using a coupled physical-biological model in this study. By comparison, the modeled seasonal variations of nutrients and primary productivity agree with observations rather well. Although the annual cycles of chlorophyll a and primary production are both characterized by a double-peak configuration, a structural difference is still apparent: the phytoplankton biomass reaches the highest value in spring while summer is characterized by the most productivity in the BS, which can be ascribed to the combined impact of seawater temperature and zooplankton-grazing pressure on the growth of algae. Based on the validated simulations, the annual budgets of carbon, nitrogen and phosphorus are estimated, and are about 0.82 mt C surplus, 39 kt N deficit and 12kt P surplus, respectively, implying that the BS ecosystem is somewhat nitrogen limited. The contribution of two external nutrient sources, namely river discharges and resuspended sediments, to the growth of algae is also examined numerically, and it is found that the influence of river-borne nutrients mainly concentrates in estuaries, whereas the reduction of sediment-borne nutrients may significantly inhibit the onset of algae bloom in the whole BS. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
During late spring and early summer of 2005, large-scale (> 15 000 km(2)), mixed dinoflagellate blooms developed along the the coast of the East China Sea. Karenia mikimotoi was the dominant harmful algal bloom species in the first stage of the bloom (late May) and was succeeded by Prorocentrum donghaiense approximately 2 wk later. Samples were collected from different stations along both north-south and west-east transects, from the Changjiang River estuary to the south Zhejiang coast, during 3 cruises of the Chinese Ecology and Oceanography of Harmful Algal Blooms Program, before and during the bloom progression. Nitrogen isotope tracer techniques were used to measure rates of NO3-, NH4+, urea, and glycine uptake during the blooms. High inorganic nitrogen (N), but low phosphorus (P) loading from the Changjiang River led to high dissolved inorganic N:dissolved inorganic P ratios in the sampling area and indicate the development of P limitation. The rates of N-15-uptake experiments enriched with PO43- were enhanced compared to unamended samples, suggesting P limitation of the N-uptake rates. The bloom progression was related to the change in availability of both organic and inorganic N and P. Reduced N forms, especially NH4+, were preferentially taken up during the blooms, but different bloom species had different rates of uptake of organic N substrates. K mikimotoi had higher rates of urea uptake, while P. donghaiense had higher rates of glycine uptake. Changes in the availability of reduced N and the ratios of N:P in inorganic and organic forms were suggested to be important in the bloom succession. Nutrient ratios and specific uptake rates of urea were similar when compared to analogous blooms on the West Florida Shelf.
Resumo:
The effects of direct sampling and three digestion methods were investigated on the determination of arsenic in Chang liver hepatocytes after ultrasonic disintegration were investigated. The results showed that the efficiency of microwave digestion and obturator digestion was better than cold digestion and direct sampling. The day precision (present as RSD) of microwave digestion and obturator digestion were 2.1% and 1.2% the inter-day precision were 1.2% and 2.0%, respectively. The spike recovery for the total As in the sample is 95.7% - 108.1%. The As detection limits with these four sample treatment methods (including direct sampling) were 0.74 - 0.93 mu g/L. In addition, arsenic speciation in Chang liver hepatocytes was also analyzed using the hyphenated technique of high performance liquid chromatography coupled with inductively coupled plasma-mass spectrometry. The experimental results indicated that dimethylarsinic acid (DMA) and an intermediate metabolite of DMA were found lit Chang liver hepatocytes besides inorganic arsenic (As(III) and As(V)).
Resumo:
A bismuth/multi-walled carbon nanotube (Bi/MWNT) composite modified electrode for determination of cobalt by differential pulse adsorptive cathodic stripping voltammetry is described. The electrode is fabricated by potentiostatic pre-plating bismuth film on an MWNT modified glassy carbon (GC) electrode. The Bi/MWNT composite modified electrode exhibits enhanced sensitivity for cobalt detection as compared with the bare GC, MWNT modified and bismuth film electrodes. Numerous key experimental parameters have been examined for optimum analytical performance of the proposed electrode. With an adsorptive accumulation of the Co(II)-dimethylglyoxime complex at -0.8 V for 200 s, the reduction peak current is proportional to the concentration of cobalt in the range of 4.0x10(-11)-1.0x10(-7) mol/L with a lower detection limit of 8.1x10(-11) mol/L. The proposed method has been applied Successfully to cobalt determination in seawater and lake water samples.
Resumo:
Based oil the measurements of particulate phosphorus (PP) in the Jiaozhou Bay front May 2003 to April 2004, the spatial distribution, seasonal variation and biogeochemical characteristics of PP Were investigated to Understand the fates and roles of phosphorus in the Jiaozhou Bay ecosystem. The Concentration of the total PP ranged from 0. 07 to 2. 09 mu mol/dm(3). The concentration of POP was from 0. 01 to 1. 83 mu mol/dm(3), with all average of with all average of 0. 33 mu mol/dm(3), which accounted for 50. 4% in total PP. In general, file concentrations of IT in surface water show obvious seasonal variations in the Jiaozhou Bay. POP was the highest in spring, which derived front the accumulation of phyto-detritus and was the lowest ill autumn, which was decomposed into seawaters to participate the recycle of phosphorus. PIP was the highest in spring and summer and Was the lowest in autumn and winter. PLP Was Mainly influenced by river input in the inner bay lint POP derived front autochthonous source in the outer bay. Overkill, the concentrations of IT in the inner bay were higher than those in mouth and the Older bay. In the inner bay. the concentrations of IT with the area near the shore were higher than those in the center of the bay. Totally PP showed the decreasing trend with depth especially in spring and winter. The high value of PP emerged in 20 and 10 in Corresponding to summer and autumn, respectively. The changes of POP showed hysteretic effect compared with the changes of Chl a in the investigated year. However, according to the Change of Chl a, the second high value of POP which should be emerged ill October was missing due to the remineralization of POP and participation in the recycle of phosphorus, which lead to the high concentration of orthophosphate in seawaters.
Resumo:
Marine sediment is the important sources and sinks of carbon. The inorganic carbon(IC) in marine sediments plays an important role in carbon cycling. In order to understand IC function in carbon cycling, sequential extraction method based on IC combined chemical strength difference were established to get five phases: NaCl phase (step I), NH3 - H2O phase (step II), NaOH phase (step III), NH2OH . HCl phase (step IV) and HCl phase(step V). The best extraction conditions were obtained by a series of experiments. Extractants were added into plastic centrifuge tubes in Step I - M, the capped tube were placed on a shaker table to keep the solids suspended for two hours. The suspended solution was separated by centrifugal, the residues were washed with water. The two supernatant were combined and the CO, was finally determined by volumetric analysis. The residues were transferred into conical flask in step IV and V, and then the extractants were added. The produced CO2 was adsorbed by saturated Ba(OH)(2) solution, and determined by volumetric analysis. This method for IC has a good precision in the analysis sediment samples.