997 resultados para Permafrost Degradation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Tibetan Plateau has a significant role with regard to atmospheric circulation and the monsoon in particular. Changes between a closed plant cover and open bare soil are one of the striking effects of land use degradation observed with unsustainable range management or climate change, but experiments investigating changes of surface properties and processes together with atmospheric feedbacks are rare and have not been undertaken in the world's two largest alpine ecosystems, the alpine steppe and the Kobresia pygmaea pastures of the Tibetan Plateau. We connected measurements of micro-lysimeter, chamber, 13C labelling, and eddy covariance and combined the observations with land surface and atmospheric models, adapted to the highland conditions. This allowed us to analyse how three degradation stages affect the water and carbon cycle of pastures on the landscape scale within the core region of the Kobresia pygmaea ecosystem. The study revealed that increasing degradation of the Kobresia turf affects carbon allocation and strongly reduces the carbon uptake, compromising the function of Kobresia pastures as a carbon sink. Pasture degradation leads to a shift from transpiration to evaporation while a change in the sum of evapotranspiration over a longer period cannot be confirmed. The results show an earlier onset of convection and cloud generation, likely triggered by a shift in evapotranspiration timing when dominated by evaporation. Consequently, precipitation starts earlier and clouds decrease the incoming solar radiation. In summary, the changes in surface properties by pasture degradation found on the highland have a significant influence on larger scales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Land degradation is intrinsically complex and involves decisions by many agencies and individuals, land degradation map- ping should be used as a learning tool through which managers, experts and stakeholders can re-examine their views within a wider semantic context. In this paper, we introduce an analytical framework for mapping land degradation, developed by World Overview for Conservation Approaches and technologies (WOCAT) programs, which aims to develop some thematic maps that serve as an useful tool and including effective information on land degradation and conservation status. Consequently, this methodology would provide an important background for decision-making in order to launch rehabilitation/remediation actions in high-priority intervention areas. As land degradation mapping is a problem-solving task that aims to provide clear information, this study entails the implementation of WOCAT mapping tool, which integrate a set of indicators to appraise the severity of land degradation across a representative watershed. So this work focuses on the use of the most relevant indicators for measuring impacts of different degradation processes in El Mkhachbiya catchment, situated in Northwest of Tunisia and those actions taken to deal with them based on the analysis of operating modes and issues of degradation in different land use systems. This study aims to provide a database for surveillance and monitoring of land degradation, in order to support stakeholders in making appropriate choices and judge guidelines and possible suitable recommendations to remedy the situation in order to promote sustainable development. The approach is illustrated through a case study of an urban watershed in Northwest of Tunisia. Results showed that the main land degradation drivers in the study area were related to natural processes, which were exacerbated by human activities. So the output of this analytical framework enabled a better communication of land degradation issues and concerns in a way relevant for policymakers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Slow growth, branch dieback and scarce acorn yield are visible symptoms of decay in abandoned Quercus pyrenaica coppices. A hypothetical root-to-shoot (R:S) imbalance provoked by historical coppicing is investigated as the underlying driver of stand degradation. After stem genotyping, 12 stems belonging to two clones covering 81 and 16 m2 were harvested and excavated to measure above- and below-ground biomass and nonstructural carbohydrate (NSC) pools. To study root system functionality, root connections and root longevity were assessed by radiocarbon analysis. Seasonality of NSC was monitored on five additional clones. NSC pools, R:S biomass ratio and fine roots-to-foliage ratio were higher in the large clone, whose centennial root system, estimated to be 550 years old, maintained large amounts of sapwood (51.8%) for NSC storage. 248 root connections were observed within the large clone, whereas the small clone showed comparatively simpler root structure (26 connections). NSC concentrations were higher in spring (before bud burst) and autumn (before leaf fall), and lower in summer (after complete leaf expansion); they were always higher in roots than in stems or twigs. The persistence of massive and highly inter-connected root systems after coppicing may lead to increasing R:S biomass ratios and root NSC pools over time. We highlight the need of surveying belowground organs to understand aboveground dynamics of Q. pyrenaica, and suggest that enhanced belowground NSC storage and consumption reflect a trade-off between clonal vegetative resilience and aboveground performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biodegradable magnesium plate/screw osteosynthesis systems were implanted on the frontal bone of adult miniature pigs. The chosen implant geometries were based on existing titanium systems used for the treatment of facial fractures. The aim of this study was to evaluate the in vivo degradation and tissue response of the magnesium alloy WE43 with and without a plasma electrolytic surface coating. Of 14 animals, 6 received magnesium implants with surface modification (coated), 6 without surface modification (uncoated), and 2 titanium implants. Radiological examination of the skull was performed at 1, 4, and 8 weeks post-implantation. After euthanasia at 12 and 24 weeks, X-ray, computed tomography, and microfocus computed tomography analyses and histological and histomorphological examinations of the bone/implant blocks were performed. The results showed a good tolerance of the plate/screw system without wound healing disturbance. In the radiological examination, gas pocket formation was found mainly around the uncoated plates 4 weeks after surgery. The micro-CT and histological analyses showed significantly lower corrosion rates and increased bone density and bone implant contact area around the coated screws compared to the uncoated screws at both endpoints. This study shows promising results for the further development of coated magnesium implants for the osteosynthesis of the facial skeleton.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Effects of environmental conditions influencing photosynthesis and photorespiration on senescence and net protein degradation were investigated in segments from the first leaf of young wheat (Triticum aestivum L. cv. Arina) plants. The segments were floated on H2O at 25, 30 or 35°C in continuous light (PAR: 50 or 150 µmol m−2 s−1) in ambient air and in CO2-depleted air. Stromal enzymes, including phosphoglycolate phosphatase, glutamine synthetase, ferredoxin-dependent glutamate synthase, phosphoribulokinase, and the peroxisomal enzyme, glycolate oxidase, were detected by SDS-PAGE followed by immunoblotting with specific antibodies. In general, the net degradation of proteins and chlorophylls was delayed in CO2-depleted air. However, little effect of CO2 on protein degradation was observed at 25°C under the lower level of irradiance. The senescence retardation by the removal of CO2 was most pronounced at 30°C and at the higher irradiance. The stromal enzymes declined in a coordinated manner. Immunoreactive fragments from the degraded polypeptides were in most cases not detectable. However, an insolubilized fragment of glycolate oxidase accumulated in vivo, especially at 25°C in the presence of CO2. Detection of this fragment was minimal after incubation at 30°C and completely absent on blots from segments kept at 35°C. In CO2-depleted air, the fragment was only weakly detectable after incubation at 25°C. The results from these investigations indicate that environmental conditions that influence photosynthesis may interfere with senescence and protein catabolism in wheat leaves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intact chloroplasts were isolated from mature pea (Pisum sativum L.) leaves in order to study the degradation of several stromal proteins in organello. Changes in the abundances of ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39), phosphoribulokinase (EC 2.7.1.19), glutamine synthetase (EC 6.3.1.2) and ferredoxin-dependent glutamine:α-ketoglutarate aminotransferase (glutamate synthase; EC 1.4.7.1) were detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by Coomassie-staining of the gels or immunoblotting using specific antibodies for the different enzymes. Degradation of several stromal proteins was strongly stimulated when intact chloroplasts were incubated in the light in the presence of dithiothreitol. Since free radicals may artificially accumulate in the chloroplast under such conditions and interfere with the stability of stromal proteins, the general relevance of these processes remains questionable. In the absence of light, proteolysis proceeded slowly in isolated chloroplasts and was not stimulated by dithiothreitol. Inhibition by ethylenediaminetetraacetic acid (EDTA), 1,10-phenanthroline or excess zinc ions as well as the requirement for divalent cations suggested that a zinc-containing metalloprotease participated in this process. Furthermore, light-independent degradation of ribulose-1,5-bisphosphate carboxylase/oxygenase and phosphoribulokinase was enhanced in chloroplasts isolated from leaves in which senescence was accelerated by nitrogen starvation. Our results indicate that light-independent stromal protein degradation in intact chloroplasts may be analogous to proteolysis that occurs in intact leaves during senescence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ecteinascidin 743 (Et-743), which is a novel DNA minor groove alkylator with a unique spectrum of antitumor activity, is currently being evaluated in phase II/III clinical trials. Although the precise molecular mechanisms responsible for the observed antitumor activity are poorly understood, recent data suggests that post-translational modifications of RNA polymerase II Large Subunit (RNAPII LS) may play a central role in the cellular response to this promising anticancer agent. The stalling of an actively transcribing RNAPII LS at Et-743-DNA adducts is the initial cellular signal for transcription-coupled nucleotide excision repair (TC-NER). In this manner, Et-743 poisons TC-NER and produces DNA single strand breaks. Et-743 also inhibits the transcription and RNAPII LS-mediated expression of selected genes. Because the poisoning of TC-NER and transcription inhibition are critical components of the molecular response to Et-743 treatment, we have investigated if changes in RNAPII LS contribute to the disruption of these two cellular pathways. In addition, we have studied changes in RNAPII LS in two tumors for which clinical responses were reported in phase I/II clinical trials: renal cell carcinoma and Ewing's sarcoma. Our results demonstrate that Et-743 induces degradation of the RNAPII LS that is dependent on active transcription, a functional 26S proteasome, and requires functional TC-NER, but not global genome repair. Additionally, we have provided the first experimental data indicating that degradation of RNAPII LS might lead to the inhibition of activated gene transcription. A set of studies performed in isogenic renal carcinoma cells deficient in von Hippel-Lindau protein, which is a ubiquitin-E3-ligase for RNAPII LS, confirmed the central role of RNAPII LS degradation in the sensitivity to Et-743. Finally, we have shown that RNAPII LS is also degraded in Ewing's sarcoma tumors following Et-743 treatment and provide data to suggest that this event plays a role in decreased expression of the Ewing's sarcoma oncoprotein, EWS-Fli1. Altogether, these data implicate degradation of RNAPII LS as a critical event following Et-743 exposure and suggest that the clinical activity observed in renal carcinoma and Ewing's sarcoma may be mediated by disruption of molecular pathways requiring a fully functional RNAPII LS. ^