986 resultados para Peat.
Resumo:
Deciphering the driving mechanisms of Earth system processes, including the climate dynamics expressed as paleoceanographic events, requires a complete, continuous, and high-resolution stratigraphy that is very accurately dated. In this study, we construct a robust astronomically calibrated age model for the middle Eocene to early Oligocene interval (31-43 Ma) in order to permit more detailed study of the exceptional climatic events that occurred during this time, including the Middle Eocene Climate Optimum and the Eocene/Oligocene transition. A goal of this effort is to accurately date the middle Eocene to early Oligocene composite section cored during the Pacific Equatorial Age Transect (PEAT, IODP Exp. 320/321). The stratigraphic framework for the new time scale is based on the identification of the stable long eccentricity cycle in published and new high-resolution records encompassing bulk and benthic stable isotope, calibrated XRF core scanning, and magnetostratigraphic data from ODP Sites 171B-1052, 189-1172, 199-1218, and 207-1260 as well as IODP Sites 320-U1333, and -U1334 spanning magnetic polarity Chrons C12n to C20n. Subsequently we applied orbital tuning of the records to the La2011 orbital solution. The resulting new time scale revises and refines the existing orbitally tuned age model and the Geomagnetic Polarity Time Scale from 31 to 43 Ma. Our newly defined absolute age for the Eocene/Oligocene boundary validates the astronomical tuned age of 33.89 Ma identified at the Massignano (Italy) global stratotype section and point. Our compilation of geochemical records of climate-controlled variability in sedimentation through the middle-to-late Eocene and early Oligocene demonstrates strong power in the eccentricity band that is readily tuned to the latest astronomical solution. Obliquity driven cyclicity is only apparent during very long eccentricity cycle minima around 35.5 Ma, 38.3 Ma and 40.1 Ma.
Resumo:
(1967): In 1956-1962 investigations of swamps from the forest-steppe and steppe of Ukraine were carried out. They were followed by spore-pollen studies of swamp deposits. These materials are partially published in papers devoted to the history of vegetation in the south of Ukraine and re-vegetation of landscape in different phases of Holocene (Artyushenko, Bachurina, 1958; Artyushenko, 1959, 1960; Artyushenko, Kucheryava, 1964). Peat area in the investigated region is very small. In the forest-steppe peat occupies 1.1%, and in the steppe - 0.03% of the whole area (Peat Reserve of the Ukrainian SSR, 1959).
Resumo:
The Great Belt, the largest inlet to the Baltic Sea, has a deep and well defined channel system. A distinct thermohaline layer at roughly 18 to 20 m of water depth separates the saltier and generally cooler deeper North Sea water from the brackish and warmer surface water. It is practically a current dominated area, with the strongest bottom currents due to prolonged west winds. The size and shape of the surface sediments and their grain size distributions show a close relationship with the prevailing hydrographical conditions. Southerly current marks predominate while northerly directions are confined to 10 to 14 m of water depth. The degree of bioturbation is highest in the uppermost sedimentary cover where practically all original stratification has been destroyed. Various bioturbate structures have been identified with the fauna. Coiling ratios of Ammonia beccarii (Linnaeus) have been successfully applied for correlation in the postglacial sediments of the early Littorina Transgression. The succession shows that in the Boreal brackish water conditions were probably followed by peat and limnic sediments as the sea regressed. With the Littorina Transgression, the sea again entered the area and high sedimentation rates resulted in the major deposits of the Great Belt. At least for the last 4000 years, sedimentation rates had been very low. Present day currents sweep out the sediments, mainly to the southern marginal areas.
Resumo:
In the Tromper Wiek northeast of Rügen, acoustical investigations using Air Gun, Boomer, Chirp Sonar and Sediment-Echosounder were carried out. Together with sediment core information, it allowed the identification of five seismostratigraphic units (E1 to E5). Conventional and AMS-14C-datings supported their chronostratigraphical classification. The uppermost till (E1) was incised by late glacial channels filled with glaciolacustrine sediments (E2) of the early Baltic Ice Lake stages. These were regionally overlain with a sharp unconformity by a thick (locally >20 m) sedimentary complex (E3) of acoustically laminated silts of freshwater origin. This lower part of the E3-complex (E3a) is overlain by fluvial to coastal silty fine sands (E3b) deeper towards the Arkona Basin. Fine plant debris in the uppermost part of sub-unit E3a yielded ages of 10,100 and 10,500 14C-years B.P., representing the final phase of the Baltic Ice Lake. The fine sands of sub-unit E3b were deposited after the final drainage of the Baltic Ice Lake. In the shallower central part of the bay, the silts of sub-unit E3a were covered by a younger unit (E4) of fine sand with plant debris. A sedge peat occurring at the basis of unit E4 yielded an age of 9,590 14C-years B.P. The fine sands overlying the unit E3 in the central part of Tromper Wiek were deposited in the Ancylus Lake. Their position at about 20 m below present sea level (b.s.l.) reflects the maximum highstand in this area. The character and distribution of the Early Holocene deposits at greater depth suggest a lake water level at about 30 m b.s.l. after this highstand. Below 25 m b.s.l. muddy Littorina Sea sediments are observed. The thickness of these muds and sandy muds increases gradually towards the Arkona Basin. Locally, they are found in a channel-like structure immediately north of Jasmund.
Resumo:
We investigated total storage and landscape partitioning of soil organic carbon (SOC) in continuous permafrost terrain, central Canadian Arctic. The study is based on soil chemical analyses of pedons sampled to 1 m depth at 35 individual sites along three transects. Radiocarbon dating of cryoturbated soil pockets, basal peat and fossil wood shows that cryoturbation processes have been occurring since the Middle Holocene and that peat deposits started to accumulate in a forest-tundra environment where spruce was present (~6000 cal yrs BP). Detailed partitioning of SOC into surface organic horizons, cryoturbated soil pockets and non-cryoturbated mineral soil horizons is calculated (with storage in active layer and permafrost calculated separately) and explored using principal component analysis. The detailed partitioning and mean storage of SOC in the landscape are estimated from transect vegetation inventories and a land cover classification based on a Landsat satellite image. Mean SOC storage in the 0-100 cm depth interval is 33.8 kg C/m**2, of which 11.8 kg C/m**2 is in permafrost. Fifty-six per cent of the total SOC mass is stored in peatlands (mainly bogs), but cryoturbated soil pockets in Turbic Cryosols also contribute significantly (17%). Elemental C/N ratios indicate that this cryoturbated soil organic matter (SOM) decomposes more slowly than SOM in surface O-horizons.