974 resultados para POLYPROPYLENE FRACTIONS
Resumo:
This study was conducted to evaluate the natural variability of total, extractable and non-extractable phenolics in pigmented and non-pigmented rice genotypes (Oryza sativa L.) and to estimate whether the contents and distribution of these compounds are typical for genotypes from indica and japonica subspecies. Twenty-one samples of commercial as well as new genotypes of brown rice, including seven pigmented genotypes were obtained from two Agronomic Institutes in South Brazil. Free and conjugated phenolics were extracted with ethanol, while bound phenolics were released by alkaline hydrolysis. Total phenolics were estimated in both fractions by the Folin-Ciocalteau method. Genotypes from Japonica and indica non-pigmented subspecies were not statistically distinguishable from each other, but differences in phenolic contents were associated with pericarp color. Despite individual differences, total phenolics were four times higher in pigmented than in non-pigmented genotypes (4246 and 1073 mg ferulic acid equiv. kg(-1), respectively). These high amounts were mostly due to the presence of extractable (free and conjugated) phenolics, which comprised up to 81% of total phenolics for pigmented genotypes. Non-extractable (bound) phenolics comprised 40% of total phenolics of non-pigmented rice genotypes while pigmented genotypes presented greater absolute amounts, but their contribution on total phenolics was small. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
The natural chlorophyll degradation results in noncolored chlorophyll catabolites (NCCs), but there are controversies if these are the final products. The formation and degradation of NCCs during soybean seed (Glycine max L. Merrill) maturation and two drying temperatures were investigated. Soybean was harvested at six maturation stages. The effect of postharvest drying at 40 and 60 degrees C on the NCC formation was analyzed by high-performance liquid chromatography (HPLC), and results were expressed as areas under the curve. All samples contained fractions with an absorption maximum at 320 nm, typical for NCC. The amounts of NCC increased until 114 days after planting and were significantly lower in advanced maturation stages. These results indicate that the NCC in soybeans might not be the final products of chlorophyll degradation. Their reduction in advanced maturation stages may be due to further metabolization. Heating soybeans at 40 and 60 degrees C promoted unnatural chlorophyll degradation and impaired the formation of NCC.
Resumo:
Fruits represent a rich source of soluble and insoluble fibre, and the pectin is the most common and known soluble fraction from the cell wall solubilization occurring during fruit ripening. Banana fruit, for example, is one of the most consumed fruits in the world, but its non-starch polysaccharide composition is almost unknown. Despite few works have been carried out about the enzymes concerning cell wall loosening focusing banana ripening, there is no knowledge about the composition of the banana cell wall. Moreover, there is no information about the influence of the cultivar in that composition. Nanicao and Mysore cultivars were chosen for this work because of their differential accumulation of both starch during development and amounts of total fibre in the ripe fruit. Nanicao and Mysore had their fibres subfractioned and their composition analysed. Results showed that the cultivars are distinct not only in terms of starch and soluble sugars accumulation, but also in non-starch polysaccharides amounts and composition. Non-starch polysaccharides are similar in total amounts in both banana cultivars (similar to 3.5), but substantially different in the content of CDTA and NaOH-4M soluble fractions and also in the molecular mass distribution of WSP and CDTA. Nanicao has more calcium-linked pectin than Mysore, which in turn is richer in hemicellulose-like polysaccharides. Both cultivars likewise cereals polysaccharides seem to be composed of galacturonans and arabinoxylans.(c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Glycoproteins from the total vesicular fluid of Taenia crassiceps (VF-Tc) were prepared using three different purification methods, consisting of ConA-lectin affinity chromatography (ConA-Tc), preparative electrophoresis (SDS-PAGE) (14gp-Tc), and monoclonal antibody immunoaffinity chromatography (18/14-Tc). The complex composition represented by the VF-Tc and ConA-Tc antigens revealed peptides ranging from 101 - to 14-kDa and from 92- to 12-kDa, respectively. Immunoblotting using lectins confirmed glucose/mannose (glc/man) residues in the 18- and 14-kDa peptides, which are considered specific and immunodominant for the diagnosis of cysticercosis, and indicated that these fractions are glycoproteins. Serum antibodies from a patient with neurocysticercosis that reacted to the 14gp band from T. crassiceps (Tc) were eluted from immunoblotting membranes and showed reactivity to 14gp from Taenia solium. In order to determine the similar peptide sequence, the N-terminal amino acid was determined and analyzed with sequences available in public databases. This sequence revealed partial homology between T. crassiceps and T solium peptides. In addition, mass spectrometry along with theoretical M(r) and pI of the 14gp-Tc point suggested a close relationship to some peptides of a 150-kDa protein complex of the T solium previously described. The identification of these common immunogenic sites will contribute to future efforts to develop recombinant antigens and synthetic peptides for immunological assays. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
To understand the role of peptidases in seminal physiology of Crotalus durissus terrificus, intra- and inter-seasonal activity levels of acid (APA), basic (APB), puromycin-sensitive (APN-PS) and puromycin-insensitive neutral (APN-PI), cystyl (CAP), dipeptidyl-IV (DPPIV), type-1 pyroglutamyl (PAP-I) and prolyl-imino (PIP) aminopeptidases as well as prolyl endopeptidase (POP) were evaluated in soluble (SF) and/or membrane-bound (MF) fractions of semen collected from the ductus deferens of the male reproductive tract and from the posterior portion of the uterus. Seminal APB, PIP and POP were detected in SF, while other peptidases were detected in SF and MF. Only the convoluted posterior uterus in winter and autumn had semen. Relative to other examined peptidases, in general, APN-PI, APN-PS and APB activities were predominant in the semen from the uterus and throughout the year in the semen from the ductus deferens, suggesting their great relevance in the seminal physiology of C. d. terrificus. The levels of peptidase activities in the ductus deferens semen varied seasonally and were different from those of semen in the uterus, suggesting that their modulatory actions on susceptible peptides are integrated to the male reproductive cycle events and spermatozoa viability of this snake.
Seasonal variation of peptidase activities in the reproductive tract of Crotalus durissus terrificus
Resumo:
Seasonal quantitative patterns of acid (APA), basic (APB), puromycin-sensitive (APN-PS) and puromycin-insensitive neutral (APN-PI), cystyl (CAP), dipeptidyl IV (DPPIV), type-1 pyroglutamyl (PAP-I) and prolylimino (PIP) aminopeptidases and prolyl oligopeptidase (POP) activities in soluble (SF) and solubilized membrane-bound (MF) fractions from ductus deferens, vagina and uterus were studied to evaluate their relationships with the reproductive cycle and the extensive long-term spermatozoa storage (LTSS) of the Neotropical rattlesnake Crotalus durissus terrificus. APB, PIP and POP were detected only in SF, while other peptidases were detected in SF and MF. APB, APN-PI and APN-PS were predominant in most tissues in all seasons. Peptidase activities had a common pattern of increment during the dry season (winter/autumn), which coincides with the mating period (autumn) and LTSS in the female (winter), as well as the reduction of spermatozoa motility and maintenance of fertilization capacity of spermatozoa. The high CAP activity in the soluble fraction of the vagina during winter, compared to summer (time of parturition) and spring, coincides with the relaxation of this tissue. In the soluble fraction, the low PAP-1 activity of the ductus deferens coincided with its high activity in the vagina during the winter; and the inverse occurred in summer, which is consistent with the physiological process of preserving spermatozoon viability. In conclusion, the studied peptidase activities had seasonal and tissue-specific characteristics, which suggest a relevant role in the reproductive physiology of C. d. terrificus. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
To understand the role of peptidases in seminal physiology of Crotalus durissus terrificus, activity levels of representative enzymes in semen and their sensitivities to inhibitors, cofactors, and peptide hormones were evaluated. The existence of seminal fractions and the association of peptidases with these fractions were also characterized for the first time in snakes. The prominent inhibitors of aminopeptidases (APs) were amastatin for acid, basic, and neutral; bestatin for basic; and diprotin A for dipeptidyl-IV. Cystyl and prolylimino AN were similarly susceptible to the majority of these inhibitors. The basic and neutral were characterized as metallo-peptidases, acid AP was activated by MnCl(2), and cystyl, prolyl-imino, and type I pyroglutamyl were characterized as sulphydryl-dependent APs. Angiotensin II, vasotocin, bradykinin, fertilization-promoting peptide, and TRH altered the majority of these peptidase activities; these peptides are possible substrates and/or modulators of these peptidases. Peptidase activities were found in all seminal fractions: seminal plasma (SP), prostasome-like (PR) structures, and soluble (S-) and membrane-bound fractions (MFs) of spermatozoa. The levels of activity of each peptidase varied among different seminal fractions. In SP, the higher activities were puromycin-insensitive neutral and basic APs. in PR, the higher activity was puromycin-insensitive neutral AP. In spermatozoa, the higher activity in subcellular SF was puromycin-sensitive neutral, while in MF both puromycin-sensitive and -insensitive neutral AN were equally higher than the other examined peptidases. Data suggested that these peptidases, mainly basic and neutral, have a high relevance in regulating seminal functions of C. d. terrificus.
Resumo:
Chemical interesterification is an important technological option for the production of fats targeting commercial applications. Fat blends, formulated by binary blends of palm stearin and palm olein in different ratios, were subjected to chemical interesterification. The following determinations, before and after the interesterification reactions, were done: fatty acid composition, softening point, melting point, solid fat content and consistency. For the analytical responses a multiple regression statistical model was applied. This study has shown that blending and chemical interesterifications are an effective way to modify the physical and chemical properties of palm stearin, palm olein and their blends. The mixture and chemical interesterification allowed obtaining fats with various degrees of plasticity, increasing the possibilities for the commercial use of palm stearin and palm olein. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The exchange of lipids with cells and other lipoproteins is a crucial process in HDL metabolism and for HDL antiatherogenic function. Here, we tested a practical method to quantify the simultaneous transfer to HDL of phospholipids, free-cholesterol, esterified cholesterol and triacylglycerols and to verify the lipid transfer in patients with coronary artery disease (CAD) or undergoing statin treatment. Twenty-eight control subjects without CAD, 27 with CAD and 25 CAD patients under simvastatin treatment were studied. Plasma samples were incubated with a donor nanoemulsion prepared by ultrasonication of the constituent lipids and labeled with radioactive lipids; % lipids transferred to HDL were quantified in the HDL-containing supernatant after chemical precipitation of non-HDL fractions and the nanoemulsion. The assay was precise and reproducible. Increase of temperature (4-37 A degrees C), of incubation period (5 min to 2 h), of HDL-cholesterol concentration (33-244 mg/dL) and of mass of nanoemulsion lipids (0.075-0.3 mg/mu L) resulted in increased lipid transfer from the nanoemulsion to HDL. In contrast, increasing pH (6.5-8.5) and albumin concentration (3.5-7.0 g/dL) did not affect lipid transfer. There was no difference between CAD and control non-CAD with regard to the lipid transfer, but statin treatment reduced the transfer to HDL of all four lipids. The test herein described is a valid and practical tool for exploring an important aspect of HDL metabolism.
Resumo:
A selective method using three-phase liquid-phase microextraction (LPME) in conjunction with LC-MS-MS was devised for the enantioselective determination of chloroquine and its n-dealkylated metabolites in plasma samples. After alkalinization of the samples, the analytes were extracted into n-octanol immobilized in the pores of a polypropylene hollow fiber membrane and back extracted into the acidic acceptor phase (0.1 M TFA) filled into the lumen of the hollow fiber. Following LPME, the analytes were resolved on a Chirobiotic V column using methanol/ACN/glacial aceti acid/diethylamine (90:10:0.5:0.5 by volume) as the mobile phase. The MS detection was carried out using multiple reaction monitoring with ESI in the positive ion mode. The optimized LPME method yielded extraction recoveries ranging from 28 to 66%. The method was linear over 5 - 500 ng/mL and precision (RSD) and accuracy (relative error) values were below 15% for all analytes. The developed method was applied to the determination of the analytes in rat plasma samples after oral administration of the racemic drug.
Resumo:
Aiming at contributing with the search for neuroactive substances from natural sources, we report for the first time antinociceptive and anticonvulsant effects of some Lychnophora species. We verify the protective effects of polar extracts (600 mg/kg, intraperitoneally), and methanolic fractions of L. staavioides and L. rupestris (100 mg/kg, intraperitoneally) in pentylenetetrazole-induced seizures on mice. Previously, a screening was accomplished, evaluating the antinociceptive central activity (hot plate test), with different extracts of L. rupestris, L. staavioides and L. diamantinana. It was possible to select the possible extracts of Lychnophora with central nervous system activity. Some of the active extracts were submitted to fractionation and purification process and the methanolic fractions of L. rupestris (stem) and L. staavioides (stem), with anticonvulsant properties (100 mg/kg, intraperitoneally), yielded 4,5-di-O-[E]-caffeoylquinic acid. This substance was injected intraperitoneally in mice and showed anticonvulsant effect against pentylenetetrazole-induced seizures at doses of 25 and 50 mg/kg. It has often been shown that seizures induced by pentylenetetrazole are involved in inhibition and/or attenuation of GABAergic neurotransmission. However, other systems of the central nervous system such as adenosinergic and glutamatergic could be involved in the caffeoylquinic acid effects. Further studies should be conducted to verify that the target receptor could be participating in this anticonvulsant property. Although other investigations have reported a series of biological activities from Lychnophora species, this is the first report of central analgesic and anticonvulsant activity in species of this genus.
Resumo:
A three-phase liquid-phase microextraction (LPME) method using porous polypropylene hollow fibre membrane with a sealed end was developed for the extraction of mirtazapine (MRT) and its two major metabolites, 8-hydroxymirtazapine (8-OHM) and demethylmirtazapine (DMR), from human plasma. The analytes were extracted from 1.0 mL of plasma, previously diluted and alkalinized with 3.0 mL 0.5 mol L-1 pH 8 phosphate buffer solution and supplemented with 15% sodium chloride (NaCl), using n-hexyl ether as organic solvent and 0.01 moL L-1 acetic acid solution as the acceptor phase. Haloperidol was used as internal standard. The chromatographic analyses were carried out on a chiral column, using acetonitrile-methanol-ethanol (98:1:1, v/v/v) plus 0.2% diethylamine as mobile phase, at a flow rate of 1.0 mL min(-1). Multi-reaction monitoring (MRM) detection was performed by mass spectrometry (MS-MS) using a triple-stage quadrupole and electrospray ionization interface operating in the positive ion mode. The mean recoveries were in 18.3-45.5% range with linear responses over the 1.25-125 ng mL(-1) concentration range for all enantiomers evaluated. The quantification limit (LOQ) was 1.25 ng mL(-1). Within-day and between-day assay precision and accuracy (2.5, 50 and 100 ng mL(-1)) showed relative standard deviation and the relative error lower than 11.9% for all enantiomers evaluated. Finally, the method was successfully used for the determination of mirtazapine and its metabolite enantiomers in plasma samples obtained after single drug administration of mirtazapine to a healthy volunteer. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
An enantioselective liquid chromatographic method using two-phase hollow fiber liquid-phase microextraction (HF-LPME-HPLC) was developed for the determination of isradipine (ISR) enantiomers and its main metabolite (pyridine derivative of isradipine, PDI) in microsomal fractions isolated from rat liver. The analytes were extracted from 1 mL of microsomal medium using a two-phase HF-LPME procedure with hexyl acetate as the acceptor phase, 30 min of extraction, and sample agitation at 1,500 rpm. For the first time, ISR enantiomers and PDI were resolved. For this separation, a ChiralpakA (R) AD column with hexane/2-propanol/ethanol (94:04:02, v/v/v) as the mobile phase at a flow rate of 1.5 mL min(-1) was used. The column was kept at 23 A +/- 2 A degrees C. The drug and metabolite detection was performed at 325 nm and the internal standard oxybutynin was detected at 225 nm. The recoveries were 23% for PDI and 19% for each ISR enantiomer. The method presented quantification limits (LOQ) of 50 ng mL(-1) and was linear over the concentration range of 50-5,000 and 50-2,500 ng mL(-1) for PDI and each ISR enantiomer, respectively. The validated method was employed to an in vitro biotransformation study of ISR using rat liver microsomal fraction showing that (+)-(S)-ISR is preferentially biotransformed.
Resumo:
Thioridazine (THD) is a commonly prescribed phenotiazine neuroleptic drug, which is extensively biotransformed in the organism producing as main metabolites sulfoxides and a sulfone by sulfur oxidation Significant differences have been observed in the activity of the THD enantiomers as well as for its main metabolites, and enantioselectivity phenomena have been proved in the metabolic pathway. Here the assignment of the absolute configuration at the sulfur atom of enantiomeric THD-2-sulfoxide (THD-2-SO) has been carried out by circular dichroism (CD) spectroscopy The stereoisomers were separated by HPLC on Chiralpak AS column, recording the CD spectra for the two collected enantiomeric fractions The theoretical electronic CD spectrum has been obtained by the TDDFT/B3LYP/6-31G*. as Boltzmann averaging of the contributions calculated for the most stable conformations of the drug The comparison of the simulated and experimental spectra allowed the absolute configuration at the sulfur atom of the four THD-2-SO stereoisomers to be assigned The developed method should be useful for a reliable correlation between stereochemistry and activity and/or toxicity
Resumo:
Chlorpheniramine maleate (CLOR) enantiomers were quantified by ultraviolet spectroscopy and partial least squares regression. The CLOR enantiomers were prepared as inclusion complexes with beta-cyclodextrin and 1-butanol with mole fractions in the range from 50 to 100%. For the multivariate calibration the outliers were detected and excluded and variable selection was performed by interval partial least squares and a genetic algorithm. Figures of merit showed results for accuracy of 3.63 and 2.83% (S)-CLOR for root mean square errors of calibration and prediction, respectively. The ellipse confidence region included the point for the intercept and the slope of 1 and 0, respectively. Precision and analytical sensitivity were 0.57 and 0.50% (S)-CLOR, respectively. The sensitivity, selectivity, adjustment, and signal-to-noise ratio were also determined. The model was validated by a paired t test with the results obtained by high-performance liquid chromatography proposed by the European pharmacopoeia and circular dichroism spectroscopy. The results showed there was no significant difference between the methods at the 95% confidence level, indicating that the proposed method can be used as an alternative to standard procedures for chiral analysis.