954 resultados para PLATINUM-ELECTRODES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paired analyses of Os isotope composition and concentration of bulk sediment and leachable Os in a metalliferous pelagic clay sequence from the North Pacific, ODP Site 886C, are used to reconstruct the marine Os isotope record and the particulate meteoritic Os flux between 65.5 and 78 Ma. Measured 187Os/188Os of bulk sediments ranges from approximately 0.64 to 0.32 and those of leach analyses are very similar to bulk analyses. Hydrogenous Os dominates the sedimentary Os inventory throughout most of the studied interval. As a result the measured 187Os/188Os of leachable Os approximates that of contemporaneous seawater. The ODP 886C record shows rising 187Os/188Os in the deepest portion of the core, with a local maximum of 0.66 close to 74 Ma. The 67-72 Ma portion of the record is characterized by nearly constant 187Os/188Os ratios close to 0.6. The structure of the marine Os isotope record from ODP 886C differs markedly from the seawater 87Sr/86Sr curve, which rises monotonically throughout the time interval studied here. Calculated particulate meteoritic Os fluxes are between 0.5 and 2 pg/cm**2/kyr throughout most of the studied interval. Two discrete intervals of the core (one of which is within Cretaceous Tertiary, boundary KTB interval) are characterized by higher fluxes of meteoritic Os. Excluding these two intervals, the average background flux of particulate meteoritic Os is roughly half of that estimated from analyses of Cenozoic marine sediments. These are the first Os isotope data to provide evidence of resolvable temporal variations in the background flux of particulate meteoritic material to the Earth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"Contract No. AC02-77CH00178."

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thesis (Ph. D.)--Cornell University, May, 1989.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At head of title: Imperial mineral resources bureau.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On cover: Compiler: Mattie L. Houghten.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thesis (doctoral)--Universite de Fribourg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thesis (doctoral)--Universite de Geneve.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the results of an electrochemical study of the anodic characteristics of arsenopyrite in strongly alkaline solutions and of the cathodic reduction of ferrate( VI) and of dissolved oxygen at an arsenopyrite surface at potentials which are relevant to the oxidation reactions. Cyclic voltammetry at both arsenopyrite disc and arsenopyrite disc/platinum ring electrodes has shown that arsenic(III) is the main product of the anodic process at potentials in the region of the rest potential during oxidation by either ferrate( VI) or oxygen. Evidence for partial passivation of both the anodic and cathodic reactions has been obtained from potentiostatic current - time transients. The initial stage of oxidation by ferrate( VI) has been shown to be mass-transport controlled and this is also true of the oxidation by oxygen in dilute solutions of sodium hydroxide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon possesses unique electrical and structural properties that make it an ideal material for use in fuel cell construction. In alkaline, phosphoric acid and proton-exchange membrane fuel cells (PEMFCs), carbon is used in fabricating the bipolar plate and the gas-diffusion layer. It can also act as a support for the active metal in the catalyst layer. Various forms of carbon - from graphite and carbon blacks to composite materials - have been chosen for fuel-cell components. The development of carbon nanotubes and the emergence of nanotechnology in recent years has therefore opened up new avenues of matenials development for the low-temperature fuel cells, particularly the hydrogen PEMFC and the direct methanol PEMFC. Carbon nanotubes and aerogels are also being investigated for use as catalyst support, and this could lead to the production of more stable, high activity catalysts, with low platinum loadings (< 0.1 Mg cm(-2)) and therefore low cost. Carbon can also be used as a fuel in high-temperature fuel cells based on solid oxide, alkaline or molten carbonate technology. In the direct carbon fuel cell (DCFC), the energy of combustion of carbon is converted to electrical power with a thermodynamic efficiency close to 100%. The DCFC could therefore help to extend the use of fossil fuels for power generation as society moves towards a more sustainable energy future. (c) 2006 Elsevier B.V. All rights reserved.