951 resultados para PLATFORM VESSEL
Resumo:
This thesis deals with the challenging problem of designing systems able to perceive objects in underwater environments. In the last few decades research activities in robotics have advanced the state of art regarding intervention capabilities of autonomous systems. State of art in fields such as localization and navigation, real time perception and cognition, safe action and manipulation capabilities, applied to ground environments (both indoor and outdoor) has now reached such a readiness level that it allows high level autonomous operations. On the opposite side, the underwater environment remains a very difficult one for autonomous robots. Water influences the mechanical and electrical design of systems, interferes with sensors by limiting their capabilities, heavily impacts on data transmissions, and generally requires systems with low power consumption in order to enable reasonable mission duration. Interest in underwater applications is driven by needs of exploring and intervening in environments in which human capabilities are very limited. Nowadays, most underwater field operations are carried out by manned or remotely operated vehicles, deployed for explorations and limited intervention missions. Manned vehicles, directly on-board controlled, expose human operators to risks related to the stay in field of the mission, within a hostile environment. Remotely Operated Vehicles (ROV) currently represent the most advanced technology for underwater intervention services available on the market. These vehicles can be remotely operated for long time but they need support from an oceanographic vessel with multiple teams of highly specialized pilots. Vehicles equipped with multiple state-of-art sensors and capable to autonomously plan missions have been deployed in the last ten years and exploited as observers for underwater fauna, seabed, ship wrecks, and so on. On the other hand, underwater operations like object recovery and equipment maintenance are still challenging tasks to be conducted without human supervision since they require object perception and localization with much higher accuracy and robustness, to a degree seldom available in Autonomous Underwater Vehicles (AUV). This thesis reports the study, from design to deployment and evaluation, of a general purpose and configurable platform dedicated to stereo-vision perception in underwater environments. Several aspects related to the peculiar environment characteristics have been taken into account during all stages of system design and evaluation: depth of operation and light conditions, together with water turbidity and external weather, heavily impact on perception capabilities. The vision platform proposed in this work is a modular system comprising off-the-shelf components for both the imaging sensors and the computational unit, linked by a high performance ethernet network bus. The adopted design philosophy aims at achieving high flexibility in terms of feasible perception applications, that should not be as limited as in case of a special-purpose and dedicated hardware. Flexibility is required by the variability of underwater environments, with water conditions ranging from clear to turbid, light backscattering varying with daylight and depth, strong color distortion, and other environmental factors. Furthermore, the proposed modular design ensures an easier maintenance and update of the system over time. Performance of the proposed system, in terms of perception capabilities, has been evaluated in several underwater contexts taking advantage of the opportunity offered by the MARIS national project. Design issues like energy power consumption, heat dissipation and network capabilities have been evaluated in different scenarios. Finally, real-world experiments, conducted in multiple and variable underwater contexts, including open sea waters, have led to the collection of several datasets that have been publicly released to the scientific community. The vision system has been integrated in a state of the art AUV equipped with a robotic arm and gripper, and has been exploited in the robot control loop to successfully perform underwater grasping operations.
Resumo:
Cardiac function, such as heart rate variability, is abnormal in coronary artery disease, but its relation with the function of ocular and nail-fold blood vessels is unknown. The hypothesis was that there is abnormal retinal and peripheral microvascular endothelial function compared with large blood vessel and cardiac function. Twenty-four patients with coronary artery disease (CAD) and 30 healthy, age- and sex-matched control subjects were enrolled in the study.
Resumo:
A novel biosensing system based on a micromachined rectangular silicon membrane is proposed and investigated in this paper. A distributive sensing scheme is designed to monitor the dynamics of the sensing structure. An artificial neural network is used to process the measured data and to identify cell presence and density. Without specifying any particular bio-application, the investigation is mainly concentrated on the performance testing of this kind of biosensor as a general biosensing platform. The biosensing experiments on the microfabricated membranes involve seeding different cell densities onto the sensing surface of membrane, and measuring the corresponding dynamics information of each tested silicon membrane in the form of a series of frequency response functions (FRFs). All of those experiments are carried out in cell culture medium to simulate a practical working environment. The EA.hy 926 endothelial cell lines are chosen in this paper for the bio-experiments. The EA.hy 926 endothelial cell lines represent a particular class of biological particles that have irregular shapes, non-uniform density and uncertain growth behaviour, which are difficult to monitor using the traditional biosensors. The final predicted results reveal that the methodology of a neural-network based algorithm to perform the feature identification of cells from distributive sensory measurement has great potential in biosensing applications.
Resumo:
PURPOSE. To establish an alternative method, sequential and diameter response analysis (SDRA), to determine dynamic retinal vessel responses and their time course in serial stimulation compared with the established method of averaged diameter responses and standard static assessment. METHODS. SDRA focuses on individual time and diameter responses, taking into account the fluctuation in baseline diameter, providing improved insight into reaction patterns when compared with established methods as delivered by retinal vessel analyzer (RVA) software. SDRA patterns were developed with measurements from 78 healthy nonsmokers and subsequently validated in a group of 21 otherwise healthy smokers. Fundus photography and retinal vessel responses were assessed by RVA, intraocular pressure by contact tonometry, and blood pressure by sphygmomanometry. RESULTS. Compared with the RVA software method, SDRA demonstrated a marked difference in retinal vessel responses to flickering light (P 0.05). As a validation of that finding, SDRA showed a strong relation between baseline retinal vessel diameter and subsequent dilatory response in both healthy subjects and smokers (P 0.001). The RVA software was unable to detect this difference or to find a difference in retinal vessel arteriovenous ratio between smokers and nonsmokers (P 0.243). However, SDRA revealed that smokers’ vessels showed both an increased level of arterial baseline diameter fluctuation before flicker stimulation (P 0.005) and an increased stiffness of retinal arterioles (P 0.035) compared with those in nonsmokers. These differences were unrelated to intraocular pressure or systemic blood pressure. CONCLUSIONS. SDRA shows promise as a tool for the assessment of vessel physiology. Further studies are needed to explore its application in patients with vascular diseases.
Resumo:
This thesis documents the design, implementation and testing of a smart sensing platform that is able to discriminate between differences or small changes in a persons walking. The distributive tactile sensing method is used to monitor the deflection of the platform surface using just a small number of sensors and, through the use of neural networks, infer the characteristics of the object in contact with the surface. The thesis first describes the development of a mathematical model which uses a novel method to track the position of a moving load as it passes over the smart sensing surface. Experimental methods are then described for using the platform to track the position of swinging pendulum in three dimensions. It is demonstrated that the method can be extended to that of real-time measurement of balance and sway of a person during quiet standing. Current classification methods are then investigated for use in the classification of different gait patterns, in particular to identify individuals by their unique gait pattern. Based on these observations, a novel algorithm is developed that is able to discriminate between abnormal and affected gait. This algorithm, using the distributive tactile sensing method, was found to have greater accuracy than other methods investigated and was designed to be able to cope with any type of gait variation. The system developed in this thesis has applications in the area of medical diagnostics, either as an initial screening tool for detecting walking disorders or to be able to automatically detect changes in gait over time. The system could also be used as a discrete biometric identification method, for example identifying office workers as they pass over the surface.
Resumo:
This paper describes an innovative sensing approach allowing capture, discrimination, and classification of transients automatically in gait. A walking platform is described, which offers an alternative design to that of standard force plates with advantages that include mechanical simplicity and less restriction on dimensions. The scope of the work is to investigate as an experiment the sensitivity of the distributive tactile sensing method with the potential to address flexibility on gait assessment, including patient targeting and the extension to a variety of ambulatory applications. Using infrared sensors to measure plate deflection, gait patterns are compared with stored templates using a pattern recognition algorithm. This information is input into a neural network to classify normal and affected walking events, with a classification accuracy of just under 90 per cent achieved. The system developed has potential applications in gait analysis and rehabilitation, whereby it can be used as a tool for early diagnosis of walking disorders or to determine changes between pre- and post-operative gait.
Resumo:
Structural retinal vascular characteristics, such as vessel calibers, tortuosity and bifurcation angles are increasingly quantified in an objective manner, slowly replacing subjective qualitative disease classification schemes. This paper provides an overview of the current methodologies and calculations used to compute retinal vessel tortuosity. We set out the different parameter calculations and provide an insight into the clinical applications, while critically reviewing its pitfalls and shortcomings.