1000 resultados para PIGMENT COMPOSITION
Resumo:
The antioxidant capacity of oak wood used in the ageing of wine was studied by four different methods: measurement of scavenging capacity against a given radical (ABTS, DPPH), oxygen radical absorbance capacity (ORAC) and the ferric reducing antioxidant power (FRAP). Although, the four methods tested gave comparable results for the antioxidant capacity measured in oak wood extracts, the ORAC method gave results with some differences from the other methods. Non-toasted oak wood samples displayed more antioxidant power than toasted ones due to differences in the polyphenol compositon. A correlation analysis revealed that ellagitannins were the compounds mainly responsible for the antioxidant capacity of oak wood. Some phenolic acids, mainly gallic acid, also showed a significant correlation with antioxidant capacity.
Resumo:
Lambs (n = 48) were used in a 2 × 2 factorial arrangement of treatments to evaluate effects of inclusion of oil containing PUFA in high-concentrate diets (with or without) and duration of oil supplementation (pre- vs. postweaning) on CLA concentration of muscle and adipose tissue. Lambs were fed preweaning creep diets (with or without oil) corresponding to the dietary lactation treatment diet (with or without oil) of the dam. Dams blocked by lambing date and rearing type were randomly assigned to 1 of 2 lactation dietary treatments with or without oil supplementation. Creep diets contained approximately 70% concentrate and 30% roughage and were provided to lambs for ad libitum intake. At weaning (58.7 ± 2.5 d of age), lambs (n = 48) were randomly assigned within preweaning treatment groups to 1 of 2 postweaning dietary treatments (with or without oil) and 16 pens in a randomized block design, blocked by sex and BW. Postweaning diets were formulated to contain approximately 80% concentrate and 20% roughage and were fed once daily for ad libitum intake. Soybean and linseed oil (2:1, respectively) replaced ground corn and provided 3% additional fat in pre- and postweaning diets. Lambs were slaughtered at 60.3 ± 4.2 kg of BW. A subcutaneous fat (SQ) sample was obtained within 1 h postmortem and a LM sample at the 12th rib was obtained 24 h postmortem, and both were analyzed for fatty acid profile. Feedlot performance and carcass measurements were not affected (P ≥ 0.26) by oil supplementation. Total CLA content of LM and SQ was not affected (P ≥ 0.08) by oil supplementation pre- or postweaning, but trans-10, cis-12 CLA was greater (P = 0.02) in SQ from lambs supplemented with oil postweaning. Total PUFA content in LM was greater (P = 0.02) in lambs supplemented with oil pre- or postweaning as a result of increased concentrations of 18:2cis-9, cis-12 and longer chain PUFA. Conversely, pre- and postweaning oil supplementation resulted in less (P = 0.04) MUFA content in LM. Only postweaning oil supplementation increased (P = 0.001) SQ PUFA content. Feeding oils containing PUFA to lambs pre- and postweaning did not increase CLA content of muscle, whereas postweaning oil supplementation minimally increased CLA concentration of SQ fat. Inclusion of soybean and linseed oil in pre- and postweaning diets increased total PUFA content of SQ fat and muscle tissue without adversely affecting growth performance or carcass characteristics.
Resumo:
We give an asymptotic expansion for the Taylor coe±cients of L(P(z)) where L(z) is analytic in the open unit disc whose Taylor coe±cients vary `smoothly' and P(z) is a probability generating function. We show how this result applies to a variety of problems, amongst them obtaining the asymptotics of Bernoulli transforms and weighted renewal sequences.
Resumo:
The potential of visible-near infrared spectra, obtained using a light backscatter sensor, in conjunction with chemometrics, to predict curd moisture and whey fat content in a cheese vat was examined. A three-factor (renneting temperature, calcium chloride, cutting time), central composite design was carried out in triplicate. Spectra (300–1,100 nm) of the product in the cheese vat were captured during syneresis using a prototype light backscatter sensor. Stirring followed upon cutting the gel, and samples of curd and whey were removed at 10 min intervals and analyzed for curd moisture and whey fat content. Spectral data were used to develop models for predicting curd moisture and whey fat contents using partial least squares regression. Subjecting the spectral data set to Jack-knifing improved the accuracy of the models. The whey fat models (R = 0.91, 0.95) and curd moisture model (R = 0.86, 0.89) provided good and approximate predictions, respectively. Visible-near infrared spectroscopy was found to have potential for the prediction of important syneresis indices in stirred cheese vats.
Resumo:
This study has investigated the antioxidant capacity of different woods used in cooperage and the effect of the botanical species of wood on this capacity. Quercus robur and Castanea sativa were the species with the highest antioxidant capacity, due to their relatively high content of phenolic compounds. However, the phenolic content of Prunus avium samples was very low, also reflected in its antioxidant capacity. All measurements of antioxidant capacity were consistent with the content and composition of the phenolic compounds detected in the wood samples. The major contributors to the antioxidant capacity were identified as phenolic acids, including gallic, protocatechuic, p-coumaric and ellagic acid and all the ellagitannins, due to their characteristic structure.
Resumo:
Using grand canonical Monte Carlo simulation we show, for the first time, the influence of the carbon porosity and surface oxidation on the parameters of the Dubinin-Astakhov (DA) adsorption isotherm equation. We conclude that upon carbon surface oxidation, the adsorption decreases for all carbons studied. Moreover, the parameters of the DA model depend on the number of surface oxygen groups. That is why in the case of carbons containing surface polar groups, SF(6) adsorption isotherm data cannot be used for characterization of the porosity.
Resumo:
esponse to dietary fat manipulation is highly heterogeneous, yet generic population-based recommendations aimed at reducing the burden of CVD are given. The APOE epsilon genotype has been proposed to be an important determinant of this response. The present study reports on the dietary strategy employed in the SATgenɛ (SATurated fat and gene APOE) study, to assess the impact of altered fat content and composition on the blood lipid profile according to the APOE genotype. A flexible dietary exchange model was developed to implement three isoenergetic diets: a low-fat (LF) diet (target composition: 24 % of energy (%E) as fat, 8 %E SFA and 59 %E carbohydrate), a high-saturated fat (HSF) diet (38 %E fat, 18 %E SFA and 45 %E carbohydrate) and a HSF-DHA diet (HSF diet with 3 g DHA/d). Free-living participants (n 88; n 44 E3/E3 and n 44 E3/E4) followed the diets in a sequential design for 8 weeks, each using commercially available spreads, oils and snacks with specific fatty acid profiles. Dietary compositional targets were broadly met with significantly higher total fat (42·8 %E and 41·0 %E v. 25·1 %E, P ≤ 0·0011) and SFA (19·3 %E and 18·6 %E v. 8·33 %E, P ≤ 0·0011) intakes during the HSF and HSF-DHA diets compared with the LF diet, in addition to significantly higher DHA intake during the HSF-DHA diet (P ≤ 0·0011). Plasma phospholipid fatty acid analysis revealed a 2-fold increase in the proportion of DHA after consumption of the HSF-DHA diet for 8 weeks, which was independent of the APOE genotype. In summary, the dietary strategy was successfully implemented in a free-living population resulting in well-tolerated diets which broadly met the dietary targets set.
Resumo:
The transcriptome of the developing starchy endosperm of hexaploid wheat (Triticum aestivum) was determined using RNA-Seq isolated at five stages during grain fill. This resource represents an excellent way to identify candidate genes responsible for the starchy endosperm cell wall, which is dominated by arabinoxylan (AX), accounting for 70% of the cell wall polysaccharides, with 20% (1,3; 1,4)-beta-D-glucan, 7% glucomannan, and 4% cellulose. A complete inventory of transcripts of 124 glycosyltransferase (GT) and 72 glycosylhydrolase (GH) genes associated with cell walls is presented. The most highly expressed GT transcript (excluding those known to be involved in starch synthesis) was a GT47 family transcript similar to Arabidopsis (Arabidopsis thaliana) IRX10 involved in xylan extension, and the second most abundant was a GT61. Profiles for GT43 IRX9 and IRX14 putative orthologs were consistent with roles in AX synthesis. Low abundances were found for transcripts from genes in the acyl-coA transferase BAHD family, for which a role in AX feruloylation has been postulated. The relative expression of these was much greater in whole grain compared with starchy endosperm, correlating with the levels of bound ferulate. Transcripts associated with callose (GSL), cellulose (CESA), pectin (GAUT), and glucomannan (CSLA) synthesis were also abundant in starchy endosperm, while the corresponding cell wall polysaccharides were confirmed as low abundance (glucomannan and callose) or undetectable (pectin) in these samples. Abundant transcripts from GH families associated with the hydrolysis of these polysaccharides were also present, suggesting that they may be rapidly turned over. Abundant transcripts in the GT31 family may be responsible for the addition of Gal residues to arabinogalactan peptide.