958 resultados para PBWO4 CRYSTALS
Resumo:
Antiferroelectric liquid crystals are attractive for microdisplay applications, because of their fast switching and wide viewing angle; however the pretransitional effect reduces the contrast of the display. As a promising alternative orthoconic antiferroelectric liquid crystals (OAFLC) with a cone angle of 90º provide a good dark state between crossed polarized independently of the cell rotation. These materials are properly surface stabilized in 1.5μm thick cell required for π retardation, which limits their use in display applications. In this work, new OAFLC mixtures have been surface stabilized in thick cells. This achievement may open a new area of OAFLC applications in photonic devices.
Resumo:
In this work we propose a novel cholesteric liquid crystal beam steering device based on the Kerr effect. The first version of the device consists of two ITO coated glass plates, with intentionally prepared electrodes, assembled together with a thickness gradient between both sides of the device. One side of the cell has two substrates at direct contact; the other side has separated substrates to form the wedge. The cell was filled with a cholesteric liquid crystal. The liquid crystal material is an innovative mixture called 1892E with extremely low viscosity doped with a ZLI chiral nematogen. The proposed beam steering device based on cholesteric liquid crystals has great potential for many photonic applications. Results describing the performance of the device and the properties of the selected liquid crystals are presented.
Resumo:
Void growth in ductile materials is an important problem from the fundamental and technological viewpoint. Most of the models developed to quantify and understand the void growth process did not take into account two important factors: the anisotropic nature of plastic flow in single crystals and the size effects that appear when plastic flow is confined into very small regions.
Resumo:
Canberra, the ?Bush Capital? of Australia, was a project torn between ambition and avoidance. For fear of upsetting Sydney or Melbourne, its location avoided larger territorial aspirations but its crystalline winning scheme was bold, and contained the promise of enlightened irradiation. Postwar Canberra, like so many other cities at the time, let its future be designed by Cold-War traffic engineers, who confidently turned dream into sprawl and highways. Although Canberra s mix of ambition and banality, of symbolic desire and structural normalcy, may be precisely what a good city is all about, it probably contains these in defective proportions. What Canberra needs is just a little more of itself, in different amounts, to a higher pressure from the inside. We can easily imagine the multiplying of the original Griffin plan, adding the city onto itself, organizing the recent sprawl with new nodes and public transport with more urban streets between them. With this reclaimed space for higher density, Canberra can then grow from the inside instead of sprawling away, lowering its expenditure on transport and its carbon and sustainability footprint. The new nodes will be denser and allow for variety and change in its programmatic design. Minor but detailed changes in street and public space design will also allow for easier multi-species (people, animals?) access to urban and natural resources. Video brief of the project: http://vimeo.com/45799435
Resumo:
1D and 2D patterning of uncharged micro- and nanoparticles via dielectrophoretic forces on photovoltaic z-cut Fe:LiNbO3 have been investigated for the first time. The technique has been successfully applied with dielectric micro-particles of CaCO3 (diameter d = 1-3 μm) and metal nanoparticles of Al (d = 70 nm). At difference with previous experiments in x- and y-cut, the obtained patterns locally reproduce the light distribution with high fidelity. A simple model is provided to analyse the trapping process. The results show the remarkably good capabilities of this geometry for high quality 2D light-induced dielectrophoretic patterning overcoming the important limitations presented by previous configurations.
Resumo:
The design, fabrication and measured results are presented for a reconfigurable reflectarray antenna based on liquid crystals (LC) which operates above 100 GHz. The antenna has been designed to provide beam scanning capabilities over a wide angular range, a large bandwidth and reduced Side-Lobe Level. Measured radiation patterns are in good agreement with simulations, and show that the antenna generates an electronically steerable beam in one plane over an angular range of 55º in the frequency band from 96 to 104 GHz. The Side Lobes Level is lower than -13 dB for all the scan angles and -18 dB is obtained over 16% of the scan range. The measured performance is significantly better than previously published results for this class of electronically tunable antenna, and moreover verifies the accuracy of the proposed procedure for LC modeling and antenna design.
Resumo:
The crystal structure of human endostatin reveals a zinc-binding site. Atomic absorption spectroscopy indicates that zinc is a constituent of both human and murine endostatin in solution. The human endostatin zinc site is formed by three histidines at the N terminus, residues 1, 3, and, 11, and an aspartic acid at residue 76. The N-terminal loop ordered around the zinc makes a dimeric contact in human endostatin crystals. The location of the zinc site at the amino terminus, immediately adjacent to the precursor cleavage site, suggests the possibility that the zinc may be involved in activation of the antiangiogenic activity following cleavage from the inactive collagen XVIII precursor or in the cleavage process itself.
Resumo:
The observation of light metal ions in nucleic acids crystals is generally a fortuitous event. Sodium ions in particular are notoriously difficult to detect because their X-ray scattering contributions are virtually identical to those of water and Na+…O distances are only slightly shorter than strong hydrogen bonds between well-ordered water molecules. We demonstrate here that replacement of Na+ by K+, Rb+ or Cs+ and precise measurements of anomalous differences in intensities provide a particularly sensitive method for detecting alkali metal ion-binding sites in nucleic acid crystals. Not only can alkali metal ions be readily located in such structures, but the presence of Rb+ or Cs+ also allows structure determination by the single wavelength anomalous diffraction technique. Besides allowing identification of high occupancy binding sites, the combination of high resolution and anomalous diffraction data established here can also pinpoint binding sites that feature only partial occupancy. Conversely, high resolution of the data alone does not necessarily allow differentiation between water and partially ordered metal ions, as demonstrated with the crystal structure of a DNA duplex determined to a resolution of 0.6 Å.
Resumo:
McKay et al. [(1996) Science 273, 924–930] suggested that carbonate globules in the meteorite ALH84001 contained the fossil remains of Martian microbes. We have characterized a subpopulation of magnetite (Fe3O4) crystals present in abundance within the Fe-rich rims of these carbonate globules. We find these Martian magnetites to be both chemically and physically identical to terrestrial, biogenically precipitated, intracellular magnetites produced by magnetotactic bacteria strain MV-1. Specifically, both magnetite populations are single-domain and chemically pure, and exhibit a unique crystal habit we describe as truncated hexa-octahedral. There are no known reports of inorganic processes to explain the observation of truncated hexa-octahedral magnetites in a terrestrial sample. In bacteria strain MV-1 their presence is therefore likely a product of Natural Selection. Unless there is an unknown and unexplained inorganic process on Mars that is conspicuously absent on the Earth and forms truncated hexa-octahedral magnetites, we suggest that these magnetite crystals in the Martian meteorite ALH84001 were likely produced by a biogenic process. As such, these crystals are interpreted as Martian magnetofossils and constitute evidence of the oldest life yet found.
Resumo:
The presence of magnetite crystal chains, considered missing evidence for the biological origin of magnetite in ALH84001 [Thomas-Keprta, K. L., Bazylinski, D. A., Kirschvink, J. L., Clemett, S. J., McKay, D. S., Wentworth, S. J., Vali, H., Gibson, E. K., Jr., & Romanek, C. S. (2000) Geochim. Cosmochim. Acta 64, 4049–4081], is demonstrated by high-power stereo backscattered scanning electron microscopy. Five characteristics of such chains (uniform crystal size and shape within chains, gaps between crystals, orientation of elongated crystals along the chain axis, flexibility of chains, and a halo that is a possible remnant of a membrane around chains), observed or inferred to be present in magnetotactic bacteria but incompatible with a nonbiological origin, are shown to be present. Although it is unlikely that magnetotactic bacteria were ever alive in ALH84001, decomposed remains of such organisms could have been deposited in cracks in the rock while it was still on the surface on Mars.
Resumo:
A general strategy is described for designing proteins that self assemble into large symmetrical nanomaterials, including molecular cages, filaments, layers, and porous materials. In this strategy, one molecule of protein A, which naturally forms a self-assembling oligomer, An, is fused rigidly to one molecule of protein B, which forms another self-assembling oligomer, Bm. The result is a fusion protein, A-B, which self assembles with other identical copies of itself into a designed nanohedral particle or material, (A-B)p. The strategy is demonstrated through the design, production, and characterization of two fusion proteins: a 49-kDa protein designed to assemble into a cage approximately 15 nm across, and a 44-kDa protein designed to assemble into long filaments approximately 4 nm wide. The strategy opens a way to create a wide variety of potentially useful protein-based materials, some of which share similar features with natural biological assemblies.
Resumo:
By using a Raman microscope, we show that it is possible to probe the conformational states in protein crystals and crystal fragments under growth conditions (in hanging drops). The flavin cofactor in the enzyme para-hydroxybenzoate hydroxylase can assume two conformations: buried in the protein matrix (“in”) or essentially solvent-exposed (“out”). By using Raman difference spectroscopy, we previously have identified characteristic flavin marker bands for the in and out conformers in the solution phase. Now we show that the flavin Raman bands can be used to probe these conformational states in crystals, permitting a comparison between solution and crystal environments. The in or out marker bands are similar for the respective conformers in the crystal and in solution; however, significant differences do exist, showing that the environments for the flavin's isoalloxazine ring are not identical in the two phases. Moreover, the Raman-band widths of the flavin modes are narrower for both in and out conformers in the crystals, indicating that the flavin exists in a more limited range of closely related conformational states in the crystal than in solution. In general, the ability to compare detailed Raman data for complexes in crystals and solution provides a means of bridging crystallographic and solution studies.
Resumo:
The current understanding of electron tunneling through proteins has come from work on systems where donors and acceptors are held at fixed distances and orientations. The factors that control electron flow between proteins are less well understood, owing to uncertainties in the relative orientations and structures of the reactants during the very short time that tunneling occurs. As we report here, the way around such structural ambiguity is to examine oxidation–reduction reactions in protein crystals. Accordingly, we have measured and analyzed the kinetics of electron transfer between native and Zn-substituted tuna cytochrome c (cyt c) molecules in crystals of known structure. Electron transfer rates [(320 s−1 for *Zn-cyt c → Fe(III)-cyt c; 2000 s−1 for Fe(II)-cyt c → Zn-cyt c+)] over a Zn–Fe distance of 24.1 Å closely match those for intraprotein electron tunneling over similar donor–acceptor separations. Our results indicate that van der Waals interactions and water-mediated hydrogen bonds are effective coupling elements for tunneling across a protein–protein interface.
Resumo:
Electron paramagnetic resonance (EPR) spectroscopy at 94 GHz is used to study the dark-stable tyrosine radical Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{D}^{{\bullet}}}}\end{equation*}\end{document} in single crystals of photosystem II core complexes (cc) isolated from the thermophilic cyanobacterium Synechococcus elongatus. These complexes contain at least 17 subunits, including the water-oxidizing complex (WOC), and 32 chlorophyll a molecules/PS II; they are active in light-induced electron transfer and water oxidation. The crystals belong to the orthorhombic space group P212121, with four PS II dimers per unit cell. High-frequency EPR is used for enhancing the sensitivity of experiments performed on small single crystals as well as for increasing the spectral resolution of the g tensor components and of the different crystal sites. Magnitude and orientation of the g tensor of Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{D}^{{\bullet}}}}\end{equation*}\end{document} and related information on several proton hyperfine tensors are deduced from analysis of angular-dependent EPR spectra. The precise orientation of tyrosine Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{D}^{{\bullet}}}}\end{equation*}\end{document} in PS II is obtained as a first step in the EPR characterization of paramagnetic species in these single crystals.
Resumo:
Beta-hairpin structures have been crystallographically characterized only in very short acyclic peptides, in contrast to helices. The structure of the designed beta-hairpin, t-butoxycarbonyl-Leu-Val-Val-D-Pro-Gly-Leu-Val-Val-OMe in crystals is described. The two independent molecules of the octapeptide fold into almost ideal beta-hairpin conformations with the central D-Pro-Gly segment adopting a Type II' beta-turn conformation. The definitive characterization of a beta-hairpin has implications for de novo peptide and protein design, particularly for the development of three- and four-stranded beta-sheets.