988 resultados para Ozone layer depletion.
Resumo:
The Arabian Sea is unique due to the extremes in atmospheric forcing that lead to the semi-annual seasonal changes. The reversing winds of summer and winter monsoon induce the variation in the characteristics of mixed layer depth. The importance of mixed layer depth is recognized in studying the biological productivity in the ocean. In this paper variability of mixed layer depth in the north Arabian Sea have been discussed. The study is based on the data collected under North Arabian Sea Environment and Ecosystem Research (NASEER) program. The results of the study indicate that there is a significant variation in the mixed layer depth from summer to winter monsoon as well as coast to offshore.
Resumo:
This paper describes an investigation of the behavior of suction surface boundary layers in a modern multistage Low Pressure turbine. An array of eighteen surface-mounted hot-film anemometers was mounted on a stator blade of the third stage of a 4-stage machine. Data were obtained at Reynolds numbers between 0.9 × 105 and 1.8 × 105 and 1.8 × 105. At the majority of the test conditions, wakes from upstream rotors periodically initiated transition at about 40% surface length. In between these events, laminar separation occurred at about 75% surface length. It is inferred that the effect of the wakes on the performance of the bladerow is limited and that steady flow design methods should provide an adequate assessment of LP turbine performance during design.
Resumo:
This paper describes an investigation of the behavior of suction surface boundary layers in a modern multistage Low-Pressure turbine. An array of 18 surface-mounted hot-film anemometers was mounted on a stator blade of the third stage of a four-stage machine. Data were obtained at Reynolds numbers between 0.9 × 105 and 1.8 × 105. At the majority of the test conditions, wakes from upstream rotors periodically initiated transition at about 40 percent surface length. In between these events, laminar separation occurred at about 75 percent surface length. Because the wake-affected part of the flow appeared to be only intermittently turbulent, laminar separation also occurred at about 75 percent surface length while this flow was instantaneously laminar. At all but the lowest Reynolds numbers, the time-mean boundary layer appeared to have re-attached by the trailing edge even though it was not fully turbulent. It is inferred that the effect of the wakes on the performance of the blade row is limited and that steady flow design methods should provide an adequate assessment of LP turbine performance during design.
Resumo:
Lateral insulated gate bipolar transistors (LIGBTs) in silicon-on-insulator (SOI) show a unique turn off characteristic when compared to junction-isolated RESURF LIGBTs or vertical IGBTs. The turn off characteristic shows an extended `terrace' where, after the initial fast transient characteristic of IGBTs due to the loss of the electron current, the current stays almost at the same value for an extended period of time, before suddenly dropping to zero. In this paper, we show that this terrace arises because there is a value of LIGBT current during switch off where the rate of expansion of the depletion region with respect to the anode current is infinite. Once this level of anode current is approached, the depletion region starts to expand very rapidly, and is only stopped when it reaches the n-type buffer layer surrounding the anode. Once this happens, the current rapidly drops to zero. A quasi-static analytic model is derived to explain this behaviour. The analytically modelled turn off characteristic agrees well with that found by numerical simulation.