978 resultados para Oxygen demand
Resumo:
Demand response concept has been gaining increasing importance while the success of several recent implementations makes this resource benefits unquestionable. This happens in a power systems operation environment that also considers an intensive use of distributed generation. However, more adequate approaches and models are needed in order to address the small size consumers and producers aggregation, while taking into account these resources goals. The present paper focuses on the demand response programs and distributed generation resources management by a Virtual Power Player that optimally aims to minimize its operation costs taking the consumption shifting constraints into account. The impact of the consumption shifting in the distributed generation resources schedule is also considered. The methodology is applied to three scenarios based on 218 consumers and 4 types of distributed generation, in a time frame of 96 periods.
Resumo:
Following the deregulation experience of retail electricity markets in most countries, the majority of the new entrants of the liberalized retail market were pure REP (retail electricity providers). These entities were subject to financial risks because of the unexpected price variations, price spikes, volatile loads and the potential for market power exertion by GENCO (generation companies). A REP can manage the market risks by employing the DR (demand response) programs and using its' generation and storage assets at the distribution network to serve the customers. The proposed model suggests how a REP with light physical assets, such as DG (distributed generation) units and ESS (energy storage systems), can survive in a competitive retail market. The paper discusses the effective risk management strategies for the REPs to deal with the uncertainties of the DAM (day-ahead market) and how to hedge the financial losses in the market. A two-stage stochastic programming problem is formulated. It aims to establish the financial incentive-based DR programs and the optimal dispatch of the DG units and ESSs. The uncertainty of the forecasted day-ahead load demand and electricity price is also taken into account with a scenario-based approach. The principal advantage of this model for REPs is reducing the risk of financial losses in DAMs, and the main benefit for the whole system is market power mitigation by virtually increasing the price elasticity of demand and reducing the peak demand.
Resumo:
In the smart grids context, distributed energy resources management plays an important role in the power systems’ operation. Battery electric vehicles and plug-in hybrid electric vehicles should be important resources in the future distribution networks operation. Therefore, it is important to develop adequate methodologies to schedule the electric vehicles’ charge and discharge processes, avoiding network congestions and providing ancillary services. This paper proposes the participation of plug-in hybrid electric vehicles in fuel shifting demand response programs. Two services are proposed, namely the fuel shifting and the fuel discharging. The fuel shifting program consists in replacing the electric energy by fossil fuels in plug-in hybrid electric vehicles daily trips, and the fuel discharge program consists in use of their internal combustion engine to generate electricity injecting into the network. These programs are included in an energy resources management algorithm which integrates the management of other resources. The paper presents a case study considering a 37-bus distribution network with 25 distributed generators, 1908 consumers, and 2430 plug-in vehicles. Two scenarios are tested, namely a scenario with high photovoltaic generation, and a scenario without photovoltaic generation. A sensitivity analyses is performed in order to evaluate when each energy resource is required.
Resumo:
The positioning of the consumers in the power systems operation has been changed in the recent years, namely due to the implementation of competitive electricity markets. Demand response is an opportunity for the consumers’ participation in electricity markets. Smart grids can give an important support for the integration of demand response. The methodology proposed in the present paper aims to create an improved demand response program definition and remuneration scheme for aggregated resources. The consumers are aggregated in a certain number of clusters, each one corresponding to a distinct demand response program, according to the economic impact of the resulting remuneration tariff. The knowledge about the consumers is obtained from its demand price elasticity values. The illustrative case study included in the paper is based on a 218 consumers’ scenario.
Resumo:
The use of distribution networks in the current scenario of high penetration of Distributed Generation (DG) is a problem of great importance. In the competitive environment of electricity markets and smart grids, Demand Response (DR) is also gaining notable impact with several benefits for the whole system. The work presented in this paper comprises a methodology able to define the cost allocation in distribution networks considering large integration of DG and DR resources. The proposed methodology is divided into three phases and it is based on an AC Optimal Power Flow (OPF) including the determination of topological distribution factors, and consequent application of the MW-mile method. The application of the proposed tariffs definition methodology is illustrated in a distribution network with 33 buses, 66 DG units, and 32 consumers with DR capacity.
Resumo:
The implementation of competitive electricity markets has changed the consumers’ and distributed generation position power systems operation. The use of distributed generation and the participation in demand response programs, namely in smart grids, bring several advantages for consumers, aggregators, and system operators. The present paper proposes a remuneration structure for aggregated distributed generation and demand response resources. A virtual power player aggregates all the resources. The resources are aggregated in a certain number of clusters, each one corresponding to a distinct tariff group, according to the economic impact of the resulting remuneration tariff. The determined tariffs are intended to be used for several months. The aggregator can define the periodicity of the tariffs definition. The case study in this paper includes 218 consumers, and 66 distributed generation units.
Resumo:
The concept of demand response has drawing attention to the active participation in the economic operation of power systems, namely in the context of recent electricity markets and smart grid models and implementations. In these competitive contexts, aggregators are necessary in order to make possible the participation of small size consumers and generation units. The methodology proposed in the present paper aims to address the demand shifting between periods, considering multi-period demand response events. The focus is given to the impact in the subsequent periods. A Virtual Power Player operates the network, aggregating the available resources, and minimizing the operation costs. The illustrative case study included is based on a scenario of 218 consumers including generation sources.
Resumo:
Recent changes of paradigm in power systems opened the opportunity to the active participation of new players. The small and medium players gain new opportunities while participating in demand response programs. This paper explores the optimal resources scheduling in two distinct levels. First, the network operator facing large wind power variations makes use of real time pricing to induce consumers to meet wind power variations. Then, at the consumer level, each load is managed according to the consumer preferences. The two-level resources schedule has been implemented in a real-time simulation platform, which uses hardware for consumer’ loads control. The illustrative example includes a situation of large lack of wind power and focuses on a consumer with 18 loads.
Consumption Management of Air Conditioning Devices for the Participation in Demand Response Programs
Resumo:
Demand Response has been taking over the years an extreme importance. There’s a lot of demand response programs, one of them proposed in this paper, using air conditioners that could increase the power quality and decrease the spent money in many ways like: infrastructures and customers energy bill reduction. This paper proposes a method and a study on how air conditioners could integrate demand response programs. The proposed method has been modelled as an energy resources management optimization problem. This paper presents two case studies, the first one with all costumers participating and second one with some of costumers. The results obtained for both case studies have been analyzed.
Resumo:
Brazil's nosologic profile has been sustaining profound modifications. Some occurred because of massive immunization campaigns and socioeconomic and demographic trends. Some yet were pure nosologic transitions, such as the emergence of AIDS. In this demand study it is described how these changes reflected on the 8,630 admissions of an Infectious Diseases Department in Niterói, along a thirty year period. Brazilian rural endemic diseases were infrequent (3.45%). Men predominated (62%) all the time, in all age strata and in nearly all diseases. Children under fifteen predominated until 1983. There was, in the case of tetanus, a striking rise in age strata. Institutional mortality dropped from 31% in 1965 to 10% in 1984, but rose since then to 15% in 1994. However, if AIDS patients had not been computed, mortality would have kept descending till 8% at the end of the study period. The crescent unimportance of immunopreventable diseases paralleled with the growing prominence of AIDS. In less than a decade, AIDS ranked fifth among the most frequent diseases in the whole period of thirty years. As opposed to the immunopreventable diseases, neither meningitides nor pneumonia appear to be in decline. AIDS, by its exponential incidence, by its chronic character, and by the uncountable opportunistic infections it determines, imposes itself as a challenge for the coming years.
Resumo:
An individual experiences double coverage when he bene ts from more than one health insurance plan at the same time. This paper examines the impact of such supplementary insurance on the demand for health care services. Its novelty is that within the context of count data modelling and without imposing restrictive parametric assumptions, the analysis is carried out for di¤erent points of the conditional distribution, not only for its mean location. Results indicate that moral hazard is present across the whole outcome distribution for both public and private second layers of health insurance coverage but with greater magnitude in the latter group. By looking at di¤erent points we unveil that stronger double coverage e¤ects are smaller for high levels of usage. We use data for Portugal, taking advantage of particular features of the public and private protection schemes on top of the statutory National Health Service. By exploring the last Portuguese Health Survey, we were able to evaluate their impacts on the consumption of doctor visi
Resumo:
On a symmetric differentiated Stackelberg duopoly model in which there is asymmetric demand information owned by leading and follower firms, we show that the leading firm does not necessarily have advantage over the following one. The reason for this is that the second mover can adjust its output level after observing the realized demand, while the first mover chooses its output level only with the knowledge of demand distribution.
Resumo:
We consider a quantity-setting duopoly model, and we study the decision to move first or second, by assuming that. the firms produce homogeneous goods and that. there is some demand uncertainty. The competitive phase consists of two periods, and in either period, the firms can make a production decision that is irreversible. As far as the firms are allowed to choose (non-cooperatively) the period they make the decision, we study the circumstances that favour sequential rather than simultaneous decisions.
Resumo:
Selenium modified ruthenium electrocatalysts supported on carbon black were synthesized using NaBH4 reduction of the metal precursor. Prepared Ru/C electrocatalysts showed high dispersion and very small averaged particle size. These Ru/C electrocatalysts were subsequently modified with Se following two procedures: (a) preformed Ru/carbon catalyst was mixed with SeO2 in xylene and reduced in H2 and (b) Ru metal precursor was mixed with SeO2 followed by reduction with NaBH4. The XRD patterns indicate that a pyrite-type structure was obtained at higher annealing temperatures, regardless of the Ru:Se molar ratio used in the preparation step. A pyrite-type structure also emerged in samples that were not calcined; however, in this case, the pyrite-type structure was only prominent for samples with higher Ru:Se ratios. The characterization of the RuSe/C electrocatalysts suggested that the Se in noncalcined samples was present mainly as an amorphous skin. Preliminary study of activity toward oxygen reduction reaction (ORR) using electrocatalysts with a Ru:Se ratio of 1:0.7 indicated that annealing after modification with Se had a detrimental effect on their activity. This result could be related to the increased particle size of crystalline RuSe2 in heat-treated samples. Higher activity of not annealed RuSe/C catalysts could also be a result of the structure containing amorphous Se skin on the Ru crystal. The electrode obtained using not calcined RuSe showed a very promising performance with a slightly lower activity and higher overpotential in comparison with a commercial Pt/C electrode. Single wall carbon nanohorns (SWNH) were considered for application as ORR electrocatalysts' supports. The characterization of SWNH was carried out regarding their tolerance toward strong catalyzed corrosion conditions. Tests indicated that SWNH have a three times higher electrochemical surface area (ESA) loss than carbon black or Pt commercial electrodes.