996 resultados para Organic input
Resumo:
Recent experimental evidence underlines the importance of reduced diffusivity in amorphous semi-solid or glassy atmospheric aerosols. This paper investigates the impact of diffusivity on the ageing of multi-component reactive organic particles representative of atmospheric cooking aerosols. We apply and extend the recently developed KM-SUB model in a study of a 12-component mixture containing oleic and palmitoleic acids. We demonstrate that changes in the diffusivity may explain the evolution of chemical loss rates in ageing semi-solid particles, and we resolve surface and bulk processes under transient reaction conditions considering diffusivities altered by oligomerisation. This new model treatment allows prediction of the ageing of mixed organic multi-component aerosols over atmospherically relevant time scales and conditions. We illustrate the impact of changing diffusivity on the chemical half-life of reactive components in semisolid particles, and we demonstrate how solidification and crust formation at the particle surface can affect the chemical transformation of organic aerosols.
Resumo:
The first example of thin layer electrochemistry coupled to epifluorescence microscopy in the total internal reflectance mode is described and applied to the investigation of electrochemically modulated fluorescence of an organic dye (chloromethoxytetrazine) in solution. This technique allows to generate full redox switch of fluorescence when converting reversibly the dye into its anion radical, as well as to record the spectral features of the electrogenerated species. Recording simultaneously fluorescence intensity and lifetime along with coulombic charge as a function of the electrode potential will lead to a deep insight into the redox quenching mechanism.
Resumo:
A dynamic recurrent neural network (DRNN) is used to input/output linearize a control affine system in the globally linearizing control (GLC) structure. The network is trained as a part of a closed loop that involves a PI controller, the goal is to use the network, as a dynamic feedback, to cancel the nonlinear terms of the plant. The stability of the configuration is guarantee if the network and the plant are asymptotically stable and the linearizing input is bounded.
Resumo:
The spatial variability of soil nitrogen (N) mineralisation has not been extensively studied, which limits our capacity to make N fertiliser recommendations. Even less attention has been paid to the scale-dependence of the variation. The objective of this research was to investigate the scale-dependence of variation of mineral N (MinN, N–NO3− plus N–NH4+) at within-field scales. The study was based on the spatial dependence of the labile fractions of SOM, the key fractions for N mineralisation. Soils were sampled in an unbalanced nested design in a 4-ha arable field to examine the distribution of the variation of SOM at 30, 10, 1, and 0.12 m. Organic matter in free and intra-aggregate light fractions (FLF and IALF) was extracted by physical fractionation. The variation occurred entirely within 0.12 m for FLF and at 10 m for IALF. A subsequent sampling on a 5-m grid was undertaken to link the status of the SOM fractions to MinN, which showed uncorrelated spatial dependence. A uniform application of N fertiliser would be suitable in this case. The failure of SOM fractions to identify any spatial dependence of MinN suggests that other soil variables, or crop indicators, should be tested to see if they can identify different N supply areas within the field for a more efficient and environmentally friendly N management.
Resumo:
Recent experimental evidence underlines the importance of reduced diffusivity in amorphous semi-solid or glassy atmospheric aerosols. This paper investigates the impact of diffusivity on the ageing of multi-component reactive organic particles approximating atmospheric cooking aerosols. We apply and extend the recently developed KMSUB model in a study of a 12-component mixture containing oleic and palmitoleic acids. We demonstrate that changes in the diffusivity may explain the evolution of chemical loss rates in ageing semi-solid particles, and we resolve surface and bulk processes under transient reaction conditions considering diffusivities altered by oligomerisation. This new model treatment allows prediction of the ageing of mixed organic multi-component aerosols over atmospherically relevant timescales and conditions. We illustrate the impact of changing diffusivity on the chemical half-life of reactive components in semi-solid particles, and we demonstrate how solidification and crust formation at the particle surface can affect the chemical transformation of organic aerosols.
Resumo:
This paper reports on the latest contributions to over 20 years of research on organic food consumers. There is a general consensus in the literature on the reasons why people buy organic food. However, there is also a gap between consumers’ generally positive attitude toward organic food and their relatively low level of actual purchases. Product differentiation based on intangible features, such as credence attributes such as organic, in fast-moving consumer goods categories is enjoying rapid growth. However, there are many difficulties with research in this area, including the errors inherent in research that relies on consumer self-reporting methodologies. Further, in relation to organic food, there is a divergence between consumers’ perception of its superior health features and scientific evidence. Fresh fruits and vegetables are of vital importance to the organic sector as they are the entry point for many customers and account for one-third of sales. Further, although there is a small proportion of dedicated organic food buyers, most sales come from the majority of buyers who switch between conventional and organic food purchases. This paper identifies the practical implications for generic organic food marketing campaigns, as well as for increasing sales of specific products. It concludes with suggested priorities for further research.
Resumo:
We report the results of first systematic studies of organic adsorption from aqueous solutions onto relatively long single walled carbon nanotubes (four tubes, in initial and oxidised forms). Using molecular dynamics simulations (GROMACS package) we discuss the behaviour of tube-water as well as tube-adsorbate systems, for three different adsorbates (benzene, phenol and paracetamol).