963 resultados para Ore deposits -- Queensland -- Mount Isa Region
Resumo:
Land Contracts in Queensland provides a thorough, user-friendly account of the law relating to buying and selling freehold land in Queensland. The authors analyse the substance of the transaction through the medium of standard contracts, and draw on a comprehensive range of court decisions relating to the area. There are chapters covering the role of the real estate agent, the disclosure regime for sellers and agents, the inclusion of special conditions, and stamp duty and GST implications.
Resumo:
The use of stable isotope ratios δ18O and δ2H are well established in assessment of groundwater systems and their hydrology. The conventional approach is based on x/y plots and relation to various MWL’s, and plots of either ratio against parameters such as Clor EC. An extension of interpretation is the use of 2D maps and contour plots, and 2D hydrogeological vertical sections. An enhancement of presentation and interpretation is the production of “isoscapes”, usually as 2.5D surface projections. We have applied groundwater isotopic data to a 3D visualisation, using the alluvial aquifer system of the Lockyer Valley. The 3D framework is produced in GVS (Groundwater Visualisation System). This format enables enhanced presentation by displaying the spatial relationships and allowing interpolation between “data points” i.e. borehole screened zones where groundwater enters. The relative variations in the δ18O and δ2H values are similar in these ambient temperature systems. However, δ2H better reflects hydrological processes, whereas δ18O also reflects aquifer/groundwater exchange reactions. The 3D model has the advantage that it displays borehole relations to spatial features, enabling isotopic ratios and their values to be associated with, for example, bedrock groundwater mixing, interaction between aquifers, relation to stream recharge, and to near-surface and return irrigation water evaporation. Some specific features are also shown, such as zones of leakage of deeper groundwater (in this case with a GAB signature). Variations in source of recharging water at a catchment scale can be displayed. Interpolation between bores is not always possible depending on numbers and spacing, and by elongate configuration of the alluvium. In these cases, the visualisation uses discs around the screens that can be manually expanded to test extent or intersections. Separate displays are used for each of δ18O and δ2H and colour coding for isotope values.
Resumo:
The Lockyer Valley in southeast Queensland supports important and intensive irrigation which is dependant on the quality and availability of groundwater. Prolonged drought conditions from ~1997 resulted in a depletion of the alluvial aquifers, and concern for the long-term sustainability of this resource. By 2008, many areas of the valley were at < 20% of storage. Some relief occurred with rain events in early 2009, then in December 2010 - January 2011, most of southeast Queensland experienced unprecedented flooding. These storm-based events have caused a shift in research focus from investigations of drought conditions and mitigation to flood response analysis. For the alluvial aquifer system of the valley, a preliminary assessment of groundwater observation bore data, prior to and during the flood, indicates that there is a spatially variable aquifer response. While water levels in some bores screened in unconfined shallow aquifers have recovered by more than 10 m within a short period of time (months), others show only a small or moderate response. Measurements of pre- and post-flood groundwater levels and high-resolution time-series records from data loggers are considered within the framework of a 3D geological model of the Lockyer Valley using Groundwater Visualisation System(GVS). Groundwater level fluctuations covering both drought and flood periods are used to estimate groundwater recharge using the water table fluctuation method (WTF), supplemented by estimates derived using chloride mass balance. The presentation of hydraulic and recharge information in a 3D format has considerable advantages over the traditional 2D presentation of data. The 3D approach allows the distillation of multiple types of information(topography, geological, hydraulic and spatial) into one representation that provides valuable insights into the major controls of groundwater flow and recharge. The influence of aquifer lithology on the spatial variability of groundwater recharge is also demonstrated.
Resumo:
Historically, cities as urban forms have been critical to human development. In 1950, 30% of the world’s population lived in major cities. By the year 2000 this had increased to 47% with further expected growth to 50% by the end of 2007. Projections suggest that city-based densities will edge towards 60% of the global total by 2030. Such rapidly increasing urbanisation, in both developed and developing economies, challenges options for governance and planning, as well as crisis and disaster management. A common issue to the livability of cities as urban forms through time has been access to clean and reliable water supply. This is an issue that is particularly important in countries with arid ecosystems, such as Australia. This paper examines preliminary aspects, and theoretical basis, of a study into the resilience of the (potable) water supply system in Southeast Queensland (SEQ), an area with one of the most significant urban growth rates in Australia. The first stage will be to assess needs and requirements for gauging resilience characteristics of a generic water supply system, consisting of supply catchment, storage reservoir/s and treatment plant/s. The second stage will extend the analysis to examine the resilience of the SEQ water supply system incorporating specific characteristics of the SEQ water grid made increasingly vulnerable due to climate variability and projected impacts on rainfall characteristics and compounded by increasing demands due to population growth. Longer-term findings will inform decision making based on the application of the concept of resilience to designing and operating stand-alone and networked water supply infrastructure systems as well as its application to water resource systems more generally.
Resumo:
Rapid mobile technological evolution and the large economic stake in commercial development of mobile technological innovation make it necessary to understand consumers' motivations towards the latest advanced and updated technologies and services. 3G (the third generation of mobile communication technology) recently started its commercial development in the world‘s largest mobile communication market, China, after being delayed for a few years. Although China fell behind in commercially developing 3G, it is difficult to ignore studying this area, given the size of the market and promising future developments. This market deserves focused research attention, especially in terms of consumer behaviour towards the adoption of mobile technological innovation. Thus, the program of research in this thesis was designed to investigate how Chinese consumers respond to the use of this newly launched mobile technological innovation, with a focus on what factors affect their 3G adoption intentions. It aimed to yield important insights into Chinese consumers‘ innovation adoption behaviours and to contribute to marketing and innovation adoption research. Furthermore, it has been documented that Chinese consumers vary widely between regions in dialect, lifestyle, culture, purchasing power and consumption attitudes. Based on economic development and local culture, China can be divided geographically into distinctive regional consumer markets. Consequently, the results of consumer behaviour research in one region may not necessarily be extrapolated to other regions. In order to better understand Chinese consumers, the disparities between regions should not be overlooked. Therefore, another objective of this program of research was to examine regional variances in consumers' innovation adoption, specifically to identify the similarities and differences in factors influencing 3G adoption, contributing to intra-cultural studies. An extensive literature review identified two gaps: current China-based innovation adoption research studies are limited in providing adequate prediction and explanation of Chinese consumers' intentions to adopt 3G; and there was limited knowledge about the differences between regional Chinese consumers in innovation adoption. Two research questions therefore were developed to address these gaps: 1) What factors influence Chinese consumers' intentions to adopt 3G? 2) How do Chinese consumers differ between regional markets in the relative influence of the factors in determining their intentions to adopt 3G? In accordance with postpositivist research philosophy, two studies were designed to answer the research questions, using mixed methods. To meet the research objectives, the two studies were both conducted in three regional cities, namely Beijing, Shanghai and Wuhan, centred in the three regions of North China, East China and Central China respectively, with sufficient cultural and economical regional variances. Study One was an exploratory study with qualitative research methods. It involved 45 in-depth interviews in the three research cities to gain rich insights into the research context from natural settings. Eight important concepts related to 3G adoption were generated from analysis of the interview data, namely utilitarian expectation, hedonic expectation, status gains, status loss avoidance, normative influence, external influence, cost and quality concern. The concepts of social loss avoidance and quality concern were two unique findings, whereas the other concepts were similar to the findings in Western innovation adoption studies. Moreover, variances in 3G adoption between three groups of regional consumers were also identified, focusing on the perceptions of two concepts, namely status gains and normative influence. The conceptual research model was then developed incorporating the eight concepts plus the dependent variable of adoption intention. The hypothesized relationships between the nine constructs and hypotheses about the differences between regional consumers in 3G adoption were informed by the findings of Study One and the literature reviewed. Study Two was a quantitative study involving a web-based survey and statistical analysis procedure. The web-based survey attracted 800 residents from the three research cities, 270 from Beijing, 265 from Shanghai and 265 from Wuhan. They comprised three research samples for this study and consequently three sets of data were obtained. The data was analysed by Structural Equation Modelling together with Multi-group Analysis. The analysis confirmed that the concepts generated in Study One were influential factors affecting Chinese consumers' 3G adoption intention, with the exception of the concept external influence. Differences were found between the samples in the three research cities in the effect of hedonic expectation, status gains, status loss avoidance and normative influence on 3G adoption intention. The two Studies undertaken in this thesis contributed a better understanding of Chinese consumers' intentions to adopt advanced mobile technological innovation, namely 3G, in three regional markets. This knowledge contributes to innovation adoption and intra-cultural research, as well as consumer behaviour theory. It is also able to inform international and domestic telecommunication companies to develop and deliver more effective marketing strategies across Chinese regional markets. Limitations in the research were identified in terms of the sampling techniques used and the design of the two Studies. Future research was suggested in other Chinese regional markets and into consumer adoption of other types of mobile technological innovations.
Resumo:
The flood flow in urbanised areas constitutes a major hazard to the population and infrastructure as seen during the summer 2010-2011 floods in Queensland (Australia). Flood flows in urban environments have been studied relatively recently, although no study considered the impact of turbulence in the flow. During the 12-13 January 2011 flood of the Brisbane River, some turbulence measurements were conducted in an inundated urban environment in Gardens Point Road next to Brisbane's central business district (CBD) at relatively high frequency (50 Hz). The properties of the sediment flood deposits were characterised and the acoustic Doppler velocimeter unit was calibrated to obtain both instantaneous velocity components and suspended sediment concentration in the same sampling volume with the same temporal resolution. While the flow motion in Gardens Point Road was subcritical, the water elevations and velocities fluctuated with a distinctive period between 50 and 80 s. The low frequency fluctuations were linked with some local topographic effects: i.e, some local choke induced by an upstream constriction between stairwells caused some slow oscillations with a period close to the natural sloshing period of the car park. The instantaneous velocity data were analysed using a triple decomposition, and the same triple decomposition was applied to the water depth, velocity flux, suspended sediment concentration and suspended sediment flux data. The velocity fluctuation data showed a large energy component in the slow fluctuation range. For the first two tests at z = 0.35 m, the turbulence data suggested some isotropy. At z = 0.083 m, on the other hand, the findings indicated some flow anisotropy. The suspended sediment concentration (SSC) data presented a general trend with increasing SSC for decreasing water depth. During a test (T4), some long -period oscillations were observed with a period about 18 minutes. The cause of these oscillations remains unknown to the authors. The last test (T5) took place in very shallow waters and high suspended sediment concentrations. It is suggested that the flow in the car park was disconnected from the main channel. Overall the flow conditions at the sampling sites corresponded to a specific momentum between 0.2 to 0.4 m2 which would be near the upper end of the scale for safe evacuation of individuals in flooded areas. But the authors do not believe the evacuation of individuals in Gardens Point Road would have been safe because of the intense water surges and flow turbulence. More generally any criterion for safe evacuation solely based upon the flow velocity, water depth or specific momentum cannot account for the hazards caused by the flow turbulence, water depth fluctuations and water surges.
Resumo:
Background: Strategies for cancer reduction and management are targeted at both individual and area levels. Area-level strategies require careful understanding of geographic differences in cancer incidence, in particular the association with factors such as socioeconomic status, ethnicity and accessibility. This study aimed to identify the complex interplay of area-level factors associated with high area-specific incidence of Australian priority cancers using a classification and regression tree (CART) approach. Methods: Area-specific smoothed standardised incidence ratios were estimated for priority-area cancers across 478 statistical local areas in Queensland, Australia (1998-2007, n=186,075). For those cancers with significant spatial variation, CART models were used to identify whether area-level accessibility, socioeconomic status and ethnicity were associated with high area-specific incidence. Results: The accessibility of a person’s residence had the most consistent association with the risk of cancer diagnosis across the specific cancers. Many cancers were likely to have high incidence in more urban areas, although male lung cancer and cervical cancer tended to have high incidence in more remote areas. The impact of socioeconomic status and ethnicity on these associations differed by type of cancer. Conclusions: These results highlight the complex interactions between accessibility, socioeconomic status and ethnicity in determining cancer incidence risk.
Resumo:
Background: Achieving health equity has been identified as a major challenge, both internationally and within Australia. Inequalities in cancer outcomes are well documented, and must be quantified before they can be addressed. One method of portraying geographical variation in data uses maps. Recently we have produced thematic maps showing the geographical variation in cancer incidence and survival across Queensland, Australia. This article documents the decisions and rationale used in producing these maps, with the aim to assist others in producing chronic disease atlases. Methods: Bayesian hierarchical models were used to produce the estimates. Justification for the cancers chosen, geographical areas used, modelling method, outcome measures mapped, production of the adjacency matrix, assessment of convergence, sensitivity analyses performed and determination of significant geographical variation is provided. Conclusions: Although careful consideration of many issues is required, chronic disease atlases are a useful tool for assessing and quantifying geographical inequalities. In addition they help focus research efforts to investigate why the observed inequalities exist, which in turn inform advocacy, policy, support and education programs designed to reduce these inequalities.
Resumo:
The Upper Roper River is one of the Australia’s unique tropical rivers which have been largely untouched by development. The Upper Roper River catchment comprises the sub-catchments of the Waterhouse River and Roper Creek, the two tributaries of the Roper River. There is a complex geological setting with different aquifer types. In this seasonal system, close interaction between surface water and groundwater contributes to both streamflow and sustaining ecosystems. The interaction is highly variable between seasons. A conceptual hydrogeological model was developed to investigate the different hydrological processes and geochemical parameters, and determine the baseline characteristics of water resources of this pristine catchment. In the catchment, long term average rainfall is around 850 mm and is summer dominant which significantly influences the total hydrological system. The difference between seasons is pronounced, with high rainfall up to 600 mm/month in the wet season, and negligible rainfall in the dry season. Canopy interception significantly reduces the amount of effective rainfall because of the native vegetation cover in the pristine catchment. Evaporation exceeds rainfall the majority of the year. Due to elevated evaporation and high temperature in the tropics, at least 600 mm of annual rainfall is required to generate potential recharge. Analysis of 120 years of rainfall data trend helped define “wet” and “dry periods”: decreasing trend corresponds to dry periods, and increasing trend to wet periods. The period from 1900 to 1970 was considered as Dry period 1, when there were years with no effective rainfall, and if there was, the intensity of rainfall was around 300 mm. The period 1970 – 1985 was identified as the Wet period 2, when positive effective rainfall occurred in almost every year, and the intensity reached up to 700 mm. The period 1985 – 1995 was the Dry period 2, with similar characteristics as Dry period 1. Finally, the last decade was the Wet period 2, with effective rainfall intensity up to 800 mm. This variability in rainfall over decades increased/decreased recharge and discharge, improving/reducing surface water and groundwater quantity and quality in different wet and dry periods. The stream discharge follows the rainfall pattern. In the wet season, the aquifer is replenished, groundwater levels and groundwater discharge are high, and surface runoff is the dominant component of streamflow. Waterhouse River contributes two thirds and Roper Creek one third to Roper River flow. As the dry season progresses, surface runoff depletes, and groundwater becomes the main component of stream flow. Flow in Waterhouse River is negligible, the Roper Creek dries up, but the Roper River maintains its flow throughout the year. This is due to the groundwater and spring discharge from the highly permeable Tindall Limestone and tufa aquifers. Rainfall seasonality and lithology of both the catchment and aquifers are shown to influence water chemistry. In the wet season, dilution of water bodies by rainwater is the main process. In the dry season, when groundwater provides baseflow to the streams, their chemical composition reflects lithology of the aquifers, in particular the karstic areas. Water chemistry distinguishes four types of aquifer materials described as alluvium, sandstone, limestone and tufa. Surface water in the headwaters of the Waterhouse River, the Roper Creek and their tributaries are freshwater, and reflect the alluvium and sandstone aquifers. At and downstream of the confluence of the Roper River, river water chemistry indicates the influence of rainfall dilution in the wet season, and the signature of the Tindall Limestone and tufa aquifers in the dry. Rainbow Spring on the Waterhouse River and Bitter Spring on the Little Roper River (known as Roper Creek at the headwaters) discharge from the Tindall Limestone. Botanic Walk Spring and Fig Tree Spring discharge into the Roper River from tufa. The source of water was defined based on water chemical composition of the springs, surface and groundwater. The mechanisms controlling surface water chemistry were examined to define the dominance of precipitation, evaporation or rock weathering on the water chemical composition. Simple water balance models for the catchment have been developed. The important aspects to be considered in water resource planning of this total system are the naturally high salinity in the region, especially the downstream sections, and how unpredictable climate variation may impact on the natural seasonal variability of water volumes and surface-subsurface interaction.
Resumo:
It has been recognised in current literature that, in general, Australia’s population is ageing and that older people are increasingly choosing to continue to live in the community in their own homes for as long as possible. Such factors of social change are expected to lead to larger numbers of older people requiring community care services for longer periods. Despite this, there is little information available in the literature on the perceptions and experiences of older people regarding community-based care and support. This study explores the lived experience of a small group of older people living in South East Queensland who were receiving a level of care consistent with the Community Aged Care Package (CACP). It also sought to examine the impact and meaning of that care on the older person’s overall lifestyle, autonomy, and personal satisfaction. In-depth interviews were undertaken with these older people, and were analysed using Heidegger’s interpretive hermeneutical phenomenological approach. Shared narratives were then explored using Ricoeur’s narrative analysis framework. In order to sensitise the researcher to the unconscious or symbolic aspects of the care experience, Wolfensberger’s social role valorization theory (SRV) was also utilised during a third phase of analysis. Methodological rigour was strengthened within this study through the use of reflexivity and an in-depth member check discussion that was conducted with each participant. The interviews revealed there were significant differences in expectations, understanding, and perceptions between older people and their carers or service providers. The older person perceived care primarily in relational terms, and clearly preferred active participation in their care and a consistent relationship with a primary carer. Older people also sought to maintain their sense of autonomy, lifestyle, home environment, routines, and relationships, as closely as possible to those that existed prior to their requiring assistance. However, these expectations were not always supported by the care model. On the whole, service providers did not always understand what older people perceived was important within the care context. Carers seldom looked beyond the provision of assistance with specific daily tasks to consider the real impact of care on the older person. The study identified that older people reported a range of experiences when receiving care in their own homes. While some developed healthy and supportive connections with their carers, others experienced ageism, abuse, and exploitation. Unsatisfactory interactions at times resulted in a loss, to varying degrees, of their independence, their possessions, and their connectedness with others. There is therefore a need for service providers to pay more attention to the perceptions and self-perceived needs of older people, to avoid unintended or unnecessary negative impacts occurring within care provision. The study provides valuable information regarding the older person’s experience that will assist in supporting the further development and improvement of this model of care. It is proposed that these insights will enable CACPs to cater more closely to the actual needs and preferences of older people, and to avoid causing preventable harm to care recipients.