998 resultados para Optical physics


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the energy spectrum of fermionized bosonic atoms, which behave very much like spinless noninteracting fermions, in optical lattices by means of the perturbation expansion and the retarded Green's function method. The results show that the energy spectrum splits into two energy bands with single-occupation; the fermionized bosonic atom occupies nonvanishing energy state and left hole has a vanishing energy at any given momentum, and the system is in Mott-insulating state with a energy gap. Using the characteristic of energy spectra we obtained a criterion with which one can judge whether the Tonks-Girardeau (TG) gas is achieved or not.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the finite-difference-time-domain method, the near-field optical distribution and properties of Sb thin film thermal lens are calculated and simulated. The results show as follows. Within the near-field distance to the output plane of thermal lens, the spot size is approximately 100 nm, and its intensity is greatly enhanced, which is higher than that of incident light. The spot shape gradually changes from ellipse to round at the distance of more than 12 nm to the output plane. The above-simulated results are further demonstrated by the static optical recording experiment. (C) 2005 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Optical transmission through flat media should be smaller than 1. However, we have observed optical transmission up to T=1.18. The samples were ZnS-SiO2/AgOx/ZnS-SiO2 sandwiched thin films on glass substrate. The supertransmission could only be observed in the near field. We attribute the supertransmission to the lateral propagation relayed by the laser activated and decomposed Ag nanoparticles. (c) 2006 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Er3+-doped halide modified tellurite glasses were synthesized by conventional melting and quenching method. The Judd-Ofelt analysis was performed on the absorption spectra and the transition probabilities, excited state lifetimes, and the branching ratios were calculated and discussed. The intense infrared and visible fluorescence spectra under 980 nm excitation were obtained. Strong upconversion signal was observed at pumping power as low as 30 mW in the glasses with halide ions. The upconversion mechanisms and power dependent intensities were discussed, which showed two-photon process are involved for the green and red emissions. The decay times of the emitting states and the corresponding quantum efficiency were determined and explained. (C) 2004 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Yb-Bi codoped phosphate glass was prepared and its properties were compared with Bi-doped phosphate glass. The broadband infrared luminescence intensity from Yb-Bi codoped glass was similar to 32 times stronger than that of Bi-doped glass. The single-pass optical amplification was measured on a traditional two-wave mixing configuration. No optical amplification was observed in Bi-doped glass, while apparent broadband optical amplification between 1272 and 1336 nm was observed from Yb-Bi codoped glass with 980 nm laser diode excitation. The highest gain coefficient at 1272 nm of Yb-Bi codoped glass reached to 2.62 cm(-1). Yb-Bi codoped phosphate glass is a promising material for broadband optical amplification. (C) 2008 American Institute of Physics.