978 resultados para Operação de baixo carbono
Resumo:
A concentração de dióxido de carbono (CO2) global eleva-se a cada ano, isso deve-se a um desequilíbrio entre as taxas de emissão deste gás por atividades antropogênicas e fontes naturais e a taxa que a biosfera e oceanos o removem da atmosfera. O CO2 é um importante constituinte químico do ambiente, pois este é um gás que aprisiona radiação infravermelha emitida pela superfície da Terra, contribuindo, assim, para a manutenção da temperatura global necessária a vida. As alterações na concentração de CO2 na atmosfera afetam inúmeros animais que dependem que estas estejam altamente controladas para poderem sobreviver. Em abelhas Apis mellifera valores elevados de temperatura ou níveis de CO2 dentro da colméia podem ter efeitos deletérios. Estes insetos são considerados bioindicadores naturais, pois apresentam diferenças fisiológicas conforme as condições do ambiente, sendo utilizadas na avaliação de efeitos a várias substâncias presentes no meio. Atualmente uma das técnicas utilizadas para a avaliação do efeito de estímulos externos é a utilização da marcação da proteína c-Fos através da expressão do gene c-fos, que indicam tanto a existência de atividade celular como também possibilita a identificação de áreas cerebrais determinadas. Esta proteína foi utilizada com o intuído de verificar se concentrações elevadas de gás carbônico são capazes de alterar as funções cerebrais da abelha Apis mellifera, comprometendo sua atividade de orientação e, conseqüentemente seu forrageamento. Marcações positivas à proteína Fos foram observadas nas regiões dos lobos ópticos e ocelos tanto do grupo controle quanto dos grupos Resumo Jacob, C. R. O. 9 expostos ao gás dióxido de carbono para todas as idades coletadas, estes resultados estão relacionados com a...(Resumo completo, clicar acesso eletrônico abaixo)
Resumo:
Within the concepts of sustainability, energy audit magnified its importance in managing systems in industrial plants. Can reduce waste and save energy representative, the improvement and development of thermal and electrical systems can be very attractive to business. With the focus on a boiler generating steam, the energy audit aimed to increase efficiency and eliminate energy losses of the heat engine. The boiler in question is commonly called CO boiler because most of the calorific power provided comes from this. Using a fuel gas from the catalyst regeneration process, it has featured in the boiler power generation system of the refinery. Burning a mixture of gaseous components from discarded into the atmosphere, the heat engine can generate tons of steam just as the other boilers installed. The challenge was to work with this gas mixture and obtain maximum efficiency, reduce moisture and enjoy the warmth of the heat exchange have been studied and recommended. Every project, from evaluation of the variables in the composition of fuel gas, to the using of heat exchangers and refrigeration system are suitable for evaluation and improvements
Resumo:
The welding process in industrial piping is still the most effective way to ensure the durability and quality of the wide range of industrial process, although because of the high demand for energy and quality of the produced products, the piping has been constantly tested for high pressure applications and still high temperature. The welding method analyzed is the TIG (Tungsten Inert Gas) welding or GTAW (Gas-Shielded Tungsten Arc Welding), which ones have as principal feature the utilization of a not consumable tungsten electrode in the torch extremity , in this process is necessary a protective atmosphere of inert gas. The welding TIG advantage is the obtaining of a welded seam clean and with quality for not has slag after the welding. This work has as objective show the variability in the carbon steel piping welding parameters and by the tests in four proof bodies will be shown the influence of the variation of the welding methods in a welded seam. The tests will vary since the piece to be welded preparation, till penetrating liquid tests, welding macrography, welding x-ray and traction tests. Even been a clean and with quality welding is necessary a final inspection in the seam welded looking for defects almost inevitable resulted of the welded process, the obtained results have the objective of indicate and minimize the defects to ensure quality and durability of the welded seam
Resumo:
The materials designed to be used in electroluminescent (EL) devices construction are studied and improved since 1936. Great interests in the development of this kind of devices are mainly due to its low power consumption, flexibility, low cost and easy processing. One class of ELs devices with these characteristics are produced by employing a organic-polymeric/inorganic composite from a conductive polymer blend and an inorganic electroluminescent material (Zn2SiO4:Mn) dispersed in the polymeric matrix. This kind of device operates in d.c. or a.c. potentials, with EL of hundreds candela in the green region of the visible spectrum. However, few studies on the light emission were performed for these devices. In order to characterize devices made from composites, in this work is proposed a method of characterizing the electroluminescence associated with the impedance spectroscopy technique. To implement the technique of impedance spectroscopy was employ an experimental setup consisting of a source of a.c. voltage, an oscilloscope, and a reference resistor. Associated with this system, was use a photo diode and an analog electrometer to characterize the emitted light signal from the sample. The system was implemented allows characterization by impedance spectroscopy in the frequency range from 0.2 Hz up to 2 MHz and voltage amplitudes of 5 mV up to 20 kV. This system permits, at the same time, measurement of the RMS value of the luminance for devices in frequency range from 20 Hz up to 2 MHz. To test the system efficiency, an EL device was characterized showing analogous results to those reported in literature. By doing this, was demonstrated the efficiency of the system for electroluminescence characterization associated with the electrical characterization by impedance spectroscopy, for devices
Resumo:
The main purpose of this research is to raise, through lab rehearsals, the geometric properties of some oxisols from the region of Vale do Paraíba as well as comparing them to demands prescribed by Technical Specifications ESP08/05 of the Road Department of the State of Paraná, for sub-base or fine grained lateritic soil base (SAFL) and in the Technical Specification ET-DEP00/006 of the Road Department of the State of São Paulo (DER/SP) for subbase or crushed stone base. According to the results that were obtained it will be feasible to appraise the usage of these sorts of soils in structure layers of low-weight traffic pavements
Resumo:
With increasing frequency and intensity of climate disasters in Brazil, it is necessary studies on mitigation measures. From this spatialization of areas considered risk becomes essential to assist the public in preventive plans. Floods and flooding are the main types of climatic disasters that hit our country, especially the state of Sao Paulo, mainly by self degree of urbanization. From the data provided by the State Civil Defense was possible to create a database with the localities georelacional occurrences of flooding in the state in which through techniques of GIS (Geographic Information System) enabled the interrelationship and spatialization occurrence of areas affected This will help to determine potential areas of risk and different ways to prevent these disasters
Resumo:
The steel type AISI 4130 (ultra-high strength steel) is an alloy of low carbon and its main alloying elements are chromium and molybdenum, which improves the toughness of the weld metal. It has numerous applications, especially where the need for high mechanical strength. It is widely used in equipment used by the aviation industry, such as cradle-tomotor, and this is the motivation for this study. Cots are of fundamental importance, because the engine supports and maintains balance in the fixed landing gear. This equipment is subjected to intense loading cycles, whose fractures caused by fatigue are constantly observed. Will be determined the effects caused by re-welding the structure of aeronautical equipment, and will also study the microstructure of the metal without welding. The studies will be done on materials used in aircraft, which was given to study. The results provide knowledge of microstructure to evaluate any type of fracture that maybe caused by fatigue. Fatigue is a major cause of aircraft accidents and incidents occurred, which makes the study of the microstructure of the metal, weld and re-solder the knowledge essential to the life of the material. The prevention and control of the process of fatigue in aircraft are critical, since the components are subjected to greater responsibility cyclic loading
Resumo:
The experimentation in the teaching of physics has been extensively studied over the years because of its potential as a tool demonstration of physics phenomena studied in classroom. In such a perspective view of the action of apprentice student involving teaching future teachers of physics, under the Program PIBID CAPES, developed since 2009, seeks ways to improve the teaching of physics experiments using the theme chosen for the electrostatic work was . In this particular work, we report the development of the project in a State School located in the city of Rio Claro, in two rooms in the 9th grade in elementary school. It is planned with the activities of teaching physics at this level of education, look at how two different ways of displaying the contents of electrostatics in a playful way for elementary students and implement a library of experiments so that students can take the experiments to their homes
Resumo:
The N6 Plateau presents an iron-ore occurence in Carajás Mineral Province, standing near to actually operating deposits. Geological mapping in 1:10,000 scale and integration of geochemical, geophysical, petrography and drilling turns possible interpretation of his geological evolution. The mapped area has lithotypes from Archean Grão Pará Group, comprising very lowgrade metamorphic basic rocks and iron formation and an Proterozoic sedimentary association of conglomeratic sandstones called as Caninana Unity. The structural geology in given by a regional scale homoclinal, where the Grão Pará Group strata dips towards SW, as a part of the Northern Limb of the Carajás Fold. Subsequent deformation associated to the installation of the Carajás Shear Zone presents as E-W fold axis. Geochemical evidence permits to consider de Parauapebas Formation as the rocks which has been hydrothermally-altered to outsourcing fluids responsible to deposition of iron formations in the oceanic system, including different signatures which can be interpreted as possible sub-embayments in the Carajás Basin. The iron ore in the area occurs in subsurface as very fine friable hematite generated by supergenous enrichment of the iron formation. The conceived geologic model differs from the current academic proposal on the fact that hydrothermal alteration has been involved on the jaspelite enrichment. Metamorphism on the Parauapebas Formation presents paragenesis considered as ocean-floor metamorphism which precedes de deformation insofar as the rocks show no tectonic fabric referring to shallow crust evolution. Geophysical methods such as magnetometry and gravimetry presents excellent results for structural interpretation in uneven exposed terrain
Resumo:
Nowadays technological trend is based on finding materials that could support low weight with satisfactory mechanical properties and for this reason composite material became a very attractive topic in research projects all over the world. Due to its heterogenic properties, this type of material shows scatter in mechanical test results, especially in cyclic loading. Therefore it is important to predict its fatigue strength behaviour by statistic analysis, once fatigue causes approximately 90% of the failure in structural components. The present work aimed to investigate the fatigue behaviour of the Twill/Cycom 890 composite, which is carbon fiber reinforced with polymeric resin as matrix and manufactured via RTM process (Resin Transfer Molding). All samples were tested in different tensile level in triplicate in order to associate these values. The statistical analysis was conducted with Two-Parameter Weibull Distribution and then evaluated the fatigue life results for the composite. Weibull graphics were used to determine the scale and shape parameters. The S-N curve for the Twill/Cycom composite was drawn and indicated the number of cycles to occur the first damages in this material. The probability of failure was associated with material reliability, as shown in graphics for the different tensile levels and fatigue life. In addition, the laminate was evaluated by ultrasonic inspection showing a regular impregnation. The fractographic analysis conducted by SEM showed failure mechanisms for polymeric composites associated to cyclic loadings ... (Complete abstract click electronic access below)
Resumo:
With the increasing demand for electricity, the retraining of transmission lines is necessary despite environmental restrictions and crossings in densely populated areas to build new transmission and distribution lines. Solution is reuse the existent cables, replacing the old conductor cables for new cables with higher capacity power transmission, and control of sag installed. The increasing demand for electrical power has increased the electric current on the wires and therefore, it must bear out temperatures of 150°C or more, without the risk of the increasing sag beyond the established limits. In the case of long crossings or densely populated areas, sag is due to high weight of the cable on clearance. The cable type determines the weight, sag, height and the towers dimensions, which are the items that most influence the investment of the transmission line. Hence, to reduce both cost of investment and maintenance of the line, the use of a lighter cable can reduce both number and the height of the towers, with financial return on short and long term. Therefore, in order to increase the amount of transmitted energy and reduce the number of built towers and sag, is recommended in the current work substitute the current core material (steel or aluminium) for alternatives alloys or new materials, in this case a composite, which has low density, elevated stiffness (elasticity module), thus apply the pultruded carbon fiber with epoxy resin as matrix systems and perform the study of the kinetics of degradation by thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA) and differential scanning calorimetry (DSC), according to their respective standards
Resumo:
The steel type AISI 4130 (ultra-high strength steel) is an alloy of low carbon and its main alloying elements are chromium and molybdenum, which improves the toughness of the weld metal. It has numerous applications, especially where the need for high mechanical strength. It is widely used in equipment used by the aviation industry, such as cradle-tomotor, and this is the motivation for this study. Cots are of fundamental importance, because the engine supports and maintains balance in the fixed landing gear. This equipment is subjected to intense loading cycles, whose fractures caused by fatigue are constantly observed. Will be determined the effects caused by re-welding the structure of aeronautical equipment, and will also study the microstructure of the metal without welding. The studies will be done on materials used in aircraft, which was given to study. The results provide knowledge of microstructure to evaluate any type of fracture that maybe caused by fatigue. Fatigue is a major cause of aircraft accidents and incidents occurred, which makes the study of the microstructure of the metal, weld and re-solder the knowledge essential to the life of the material. The prevention and control of the process of fatigue in aircraft are critical, since the components are subjected to greater responsibility cyclic loading
Resumo:
The new market, focused on sustainability and other environmental concerns, refers to innovations that seek alternative forms of production. In pulp and paper bleaching alternative reagents are studied, for example, hydrogen peroxide, in partial substitution of chlorine dioxide in order to reduce the formation of organochlorines. In this context, this study examined the burden of hydrogen peroxide (H2O2) on alkaline extraction stage (stage Ep) required for the bleaching of pulp with eucalyptus kraft pulp, pre-oxygen delignified to obtain equivalent brightness at 90 ± 0.5% ISO, as well as its effect on quality of pulp produced. The pulp was bleached by the sequence D(Ep)DP, with the application of factor kappa of 0.14 and varying the concentration of hydrogen peroxide in Ep stage three, five, seven and nine kilograms of reagent per ton of pulp absolutely drought. The final P stage was optimized with the use of six, nine and twelve pounds of hydrogen peroxide per ton of absolutely dry pulp to achieve the required brightness. The quality of the pulp produced was analyzed based on the kappa number, the brightness and the viscosity. The methods were performed according to standards set by the standard TAPPI (Technical Association of the Pulp and Paper Industry). The best result was obtained using the following D0Ep(7)D1P(6), which showed a viscosity of 19.9 cP, 89.6% ISO brightness, consumption of 94.9 kg / t of reagents and reagent costs of US$ 28.15, because it showed better pulp quality for a lower cost compared to the others. It was found that the greater the amount of hydrogen peroxide in alkaline extraction, the lower the kappa number and increased the amount of residual hydrogen peroxide. The higher the charge of hydrogen peroxide in Ep stage, the lower the need for hydrogen peroxide in the final P stage, reducing the cost of bleaching
Resumo:
This work performs a comparative study of fatigue life of riveted lap joints involving classes of drilling which adjustment is made with interference or clearance. For this study, representative specimens of this joints were manufactured with four rivets distributed in two rows. In this context, are presented the test matrix, the methodology employed in performing of the tests, the used mathematical modeling, and that methods that are the basis for the latter are described through the theoretical foundation. Next, are present the results obtained in fatigue tests and images of the region of failure of the specimens. Finally, are present some comments and conclusions related to the results obtained
Resumo:
Along the Earth globe we can find many types of psychoactive plants. Among them is the Ipomoea violacea, popularly known as Morning Glory. There are ergotalkaloids producer associated-fungus in its leaves and seeds. One of these alkaloids that can be found is the ergine (or LSA), a homologous substance of the lysergic acid diethylamide (LSD). There are many discussions around the world about the inclusion of LSA in the list of controlled substances. In Brazil, this was recently prohibited. One of the most important point of view in the study of isotopic composition of 13C and 15N of this plant is the fact that there is a total alkaloid variation in function of its geographic origin like was verified in 1960’s, besides to aggregate knowledge about it. This work was made to verify if the isotopic ratio can be used as a tool in tracing this illegal Brazilian plant. We could conclude that this plant presents a C3 photosynthetic pathway, its parts has different isotopic carbon and nitrogen composition and that stable isotope analysis can be successfully used as a tool to detect its geographic origin