995 resultados para Olivine
Resumo:
Deep basement penetration during Legs 69 and 70 at Hole 504B in the Panama Basin allowed the recovery of a 561.5-meter sequence of basaltic pillows, thin flows, and breccias interspersed with thick massive flows. The lavas, which are aphyric to moderately plagioclase-olivine-clinopyroxene phyric, are petrologically indistinguishable from typical mid-ocean-ridge basalts (MORB). Some units are distinctive in that they carry accessory chrome-spinel microphenocrysts or emerald green clinopyroxene phenocrysts. Major and trace element analyses were carried out on 67 samples using X-ray fluorescence techniques. The basalts resemble normal MORB in terms of major elements. However, the trace element analyses show that most of the basalts are characterized by very strong depletion in the more incompatible elements compared with, for instance, normal (N type) MORB from the Atlantic at 22°N. Interdigitated with these units are one or two units that have distinctly higher incompatible element concentrations similar to those in basalts of the transitional (T) type from the Reykjanes Ridge (63°N in the Mid-Atlantic Ridge). All the basalts appear to have undergone some high-level crystal fractionation, although this has not proceeded to the extent of yielding ferrobasalts as it has at the adjacent Galapagos Spreading Center or along the East Pacific Rise. The magnetic anomalies are of lower amplitude than in the latter two regions, which suggests that the absence of ferrobasalts may be a general feature of the ocean crust generated at the Costa Rica Rift. The presence of two distinct magma types, one strongly depleted and the other moderately enriched in incompatible elements, suggests that magma chambers at the spreading center are discontinuous rather than continuous and that there is some chemical heterogeneity in the underlying mantle source. Observed variations in incompatible element ratios of basalts from the more depleted group could, however, reflect mixing between these two magma types. In general it would appear that the mantle feeding the Costa Rica Rift is significantly more depleted in incompatible trace elements than that feeding the Mid-Atlantic Ridge.
Resumo:
Ocean Drilling Program (ODP) Hole 735B, located on Atlantis Bank on the Southwest Indian Ridge, penetrated 1508 meters below seafloor with an average recovery of 87%, providing a nearly continuous sample of a significant part of oceanic Layer 3. Based on variations in texture and mineralogy, 12 major lithologic units are recognized in the section, ranging from 39.5 to 354 m thick. The principal lithologies include troctolite, troctolitic gabbro, olivine gabbro and microgabbro, gabbro, gabbronorite and Fe-Ti oxide gabbro, gabbronorite, and microgabbro. Highly deformed mylonites, cataclasites, and amphibole gneisses are locally present, as are small quantities of pyroxenite, anorthositic gabbro, and trondhjemite. Downhole variations in mineral composition, particularly for olivine and clinopyroxene, show a number of cyclic variations. Plagioclase compositions show the widest variations and correspond to different degrees of deformation and alteration as well as primary processes. Downhole chemical variations correspond reasonably well with variations in mineral compositions. Iron and titanium mainly reflect the presence of Fe-Ti oxide gabbros but show some cyclical variations in the lower part of the core where oxide gabbros are sparse. CaO is highly variable but shows a small but consistent increase downhole. MgO is more uniform than CaO and shows a very small downward increase. Sulfur and CO2 contents are generally low, but S shows significant enrichment in lithologic Unit IV, which consists of Fe-Ti oxide gabbro, reflecting the presence of sulfide minerals in the sequence. The lithologic, mineralogical, and geochemical data provided here will allow detailed comparisons with ophiolite sections as well as sections of in situ ocean crust drilled in the future.