933 resultados para Olfactory Sensory Neuron
Resumo:
Understanding how seafood will be influenced by coming environmental changes such as ocean acidification is a research priority. One major gap in knowledge relates to the fact that many experiments are not considering relevant end points related directly to production (e.g., size, survival) and product quality (e.g., sensory quality) that can have important repercussions for consumers and the seafood market. The aim of this experiment was to compare the survival and sensory quality of the adult northern shrimp (Pandalus borealis) exposed for 3 wk to a temperature at the extreme of its thermal tolerance (11°C) and 2 pH treatments: pH 8.0 (the current average pH at the sampling site) and pH 7.5 (which is out of the current natural variability and relevant to near-future ocean acidification). Results show that decreased pH increased mortality significantly, by 63%. Sensory quality was assessed through semiqualitative scoring by a panel of 30 local connoisseurs. They were asked to rate 4 shrimp (2 from each pH treatment) for 3 parameters: appearance, texture and taste. Decreased pH reduced the score significantly for appearance and taste, but not texture. As a consequence, shrimp maintained in pH8.0 had a 3.4 times increased probability to be scored as the best shrimp on the plate, whereas shrimp from the pH 7.5 treatment had a 2.6 times more chance to be scored as the least desirable shrimp on the plate. These results help to prove the concept that ocean acidification can modulate sensory quality of the northern shrimp P. borealis. More research is now needed to evaluate impacts on other seafood species, socioeconomic consequences, and potential options.
Resumo:
Predicted future CO2 levels have been found to alter sensory responses and behaviour of marine fishes. Changes include increased boldness and activity, loss of behavioural lateralization, altered auditory preferences and impaired olfactory function. Impaired olfactory function makes larval fish attracted to odours they normally avoid, including ones from predators and unfavourable habitats. These behavioural alterations have significant effects on mortality that may have far-reaching implications for population replenishment, community structure and ecosystem function. However, the underlying mechanism linking high CO2 to these diverse responses has been unknown. Here we show that abnormal olfactory preferences and loss of behavioural lateralization exhibited by two species of larval coral reef fish exposed to high CO2 can be rapidly and effectively reversed by treatment with an antagonist of the GABA-A receptor. GABA-A is a major neurotransmitter receptor in the vertebrate brain. Thus, our results indicate that high CO2 interferes with neurotransmitter function, a hitherto unrecognized threat to marine populations and ecosystems. Given the ubiquity and conserved function of GABA-A receptors, we predict that rising CO2 levels could cause sensory and behavioural impairment in a wide range of marine species, especially those that tightly control their acid-base balance through regulatory changes in HCO3 and Cl levels.
Resumo:
The persistence of most coastal marine species depends on larvae finding suitable adult habitat at the end of an offshore dispersive stage that can last weeks or months. We tested the effects that ocean acidification from elevated levels of atmospheric carbon dioxide (CO2) could have on the ability of larvae to detect olfactory cues from adult habitats. Larval clownfish reared in control seawater (pH 8.15) discriminated between a range of cues that could help them locate reef habitat and suitable settlement sites. This discriminatory ability was disrupted when larvae were reared in conditions simulating CO2-induced ocean acidification. Larvae became strongly attracted to olfactory stimuli they normally avoided when reared at levels of ocean pH that could occur ca. 2100 (pH 7.8) and they no longer responded to any olfactory cues when reared at pH levels (pH 7.6) that might be attained later next century on a business-as-usual carbon-dioxide emissions trajectory. If acidification continues unabated, the impairment of sensory ability will reduce population sustainability of many marine species, with potentially profound consequences for marine diversity.