989 resultados para ORBITAL OSTEOTOMY
Resumo:
We have compiled 223 sedimentary charcoal records from Australasia in order to examine the temporal and spatial variability of fire regimes during the Late Quaternary. While some of these records cover more than a full glacial cycle, here we focus on the last 70,000 years when the number of individual records in the compilation allows more robust conclusions. On orbital time scales, fire in Australasia predominantly reflects climate, with colder periods characterized by less and warmer intervals by more biomass burning. The composite record for the region also shows considerable millennial-scale variability during the last glacial interval (73.5–14.7 ka). Within the limits of the dating uncertainties of individual records, the variability shown by the composite charcoal record is more similar to the form, number and timing of Dansgaard–Oeschger cycles as observed in Greenland ice cores than to the variability expressed in the Antarctic ice-core record. The composite charcoal record suggests increased biomass burning in the Australasian region during Greenland Interstadials and reduced burning during Greenland Stadials. Millennial-scale variability is characteristic of the composite record of the sub-tropical high pressure belt during the past 21 ka, but the tropics show a somewhat simpler pattern of variability with major peaks in biomass burning around 15 ka and 8 ka. There is no distinct change in fire regime corresponding to the arrival of humans in Australia at 50 ± 10 ka and no correlation between archaeological evidence of increased human activity during the past 40 ka and the history of biomass burning. However, changes in biomass burning in the last 200 years may have been exacerbated or influenced by humans.
Resumo:
In life, we must often learn new associations to people, places, or things we already know. The current fMRI study investigated the neural mechanisms underlying emotional memory updating. Nineteen participants first viewed negative and neutral pictures and learned associations between those pictures and other neutral stimuli, such as neutral objects and encoding tasks. This initial learning phase was followed by a memory updating phase, during which participants learned picture-location associations for old pictures (i.e., pictures previously associated with other neutral stimuli) and new pictures (i.e., pictures not seen in the first phase). There was greater frontopolar/orbito-frontal (OFC) activity when people learned picture–location associations for old negative pictures than for new negative pictures, but frontopolar OFC activity did not significantly differ during learning locations of old versus new neutral pictures. In addition, frontopolar activity was more negatively correlated with the amygdala when participants learned picture–location associations for old negative pictures than for new negative or old neutral pictures. Past studies revealed that the frontopolar OFC allows for updating the affective values of stimuli in reversal learning or extinction of conditioning [e.g., Izquierdo, A., & Murray, E. A. Opposing effects of amygdala and orbital PFC lesions on the extinction of instrumental responding in macaque monkeys. European Journal of Neuroscience, 22, 2341–2346, 2005]; our findings suggest that it plays a more general role in updating associations to emotional stimuli.
Resumo:
Lava flows can produce changes in topography on the order of 10s-100s of metres. A knowledge of the resulting volume change provides evidence about the dynamics of an eruption. We present a method to measure topographic changes from the differential InSAR phase delays caused by the height differences between the current topography and a Digital Elevation Model (DEM). This does not require a pre-event SAR image, so it does not rely on interferometric phase remaining coherent during eruption and emplacement. Synthetic tests predicts that we can estimate lava thickness of as little as �9 m, given a minimum of 5 interferograms with suitably large orbital baseine separations. In the case of continuous motion, such as lava flow subsidence, we invert interferometric phase simultaneously for topographic change and displacement. We demonstrate the method using data from Santiaguito volcano, Guatemala, and measure increases in lava thickness of up to 140 m between 2000 and 2009, largely associated with activity between 2000 and 2005. We find a mean extrusion rate of 0.43 +/- 0.06 m3/s, which lies within the error bounds of the longer term extrusion rate between 1922-2000. The thickest and youngest parts of the flow deposit were shown to be subsiding at an average rate of �-6 cm/yr. This is the first time that flow thickness and subsidence have been measured simultaneously. We expect this method to be suitable for measurment of landslides and other mass flow deposits as well as lava flows.
Resumo:
Infrared observations of the outbursting black hole XTE J1118+480 (ATEL #383) were performed using SQIID on the Kitt Peak National Observatory 2.1m telescope. Observations spanning 2005 January 15.42-15.58 found it somewhat fainter than the previous outburst (IAUC # 7394 , # 7407 ), at average brightness J=12.91+/-0.03, H=12.50+/-0.03, K=11.95+/-0.03. The colors again correspond to an approximately flat spectrum in F_nu. No orbital variation is apparent, but there is substantial unresolved rapid variability with rms amplitude 22% in K (between 2s exposures). Further observations are planned nightly until Jan 21.
Resumo:
The complex cyclical nature of Pleistocene climate, driven by the evolving orbital configuration of the Earth, is well known but not well understood. A major climatic transition took place at the Mid-Brunhes Event (MBE), ca. 430 ka ago after which the amplitude of the ca.100 ka climate oscillations increased, with substantially warmer interglacials, including periods warmer than present. Recent modelling has indicated that while the timing of these warmer-than-present transient (WPT) events is consistent with southern warming due to a deglaciation-forced slowdown of the Atlantic Meridional Overturning Circulation, the magnitude of warming requires a local amplification, for which a candidate is the feedback of significant West Antarctic Ice Sheet (WAIS) retreat. We here extend this argument, based on the absence of WPTs in the early ice core record (450–800 ka ago), to hypothesize that the MBE could be a manifestation of decreased WAIS stability, triggered by ongoing subglacial erosion.
Resumo:
Version 1 of the Global Charcoal Database is now available for regional fire history reconstructions, data exploration, hypothesis testing, and evaluation of coupled climate–vegetation–fire model simulations. The charcoal database contains over 400 radiocarbon-dated records that document changes in charcoal abundance during the Late Quaternary. The aim of this public database is to stimulate cross-disciplinary research in fire sciences targeted at an increased understanding of the controls and impacts of natural and anthropogenic fire regimes on centennial-to-orbital timescales. We describe here the data standardization techniques for comparing multiple types of sedimentary charcoal records. Version 1 of the Global Charcoal Database has been used to characterize global and regional patterns in fire activity since the last glacial maximum. Recent studies using the charcoal database have explored the relation between climate and fire during periods of rapid climate change, including evidence of fire activity during the Younger Dryas Chronozone, and during the past two millennia.
Resumo:
We have used the BIOME4 biogeography–biochemistry model and comparison with palaeovegetation data to evaluate the response of six ocean–atmosphere general circulation models to mid-Holocene changes in orbital forcing in the mid- to high-latitudes of the northern hemisphere. All the models produce: (a) a northward shift of the northern limit of boreal forest, in response to simulated summer warming in high-latitudes. The northward shift is markedly asymmetric, with larger shifts in Eurasia than in North America; (b) an expansion of xerophytic vegetation in mid-continental North America and Eurasia, in response to increased temperatures during the growing season; (c) a northward expansion of temperate forests in eastern North America, in response to simulated winter warming. The northward shift of the northern limit of boreal forest and the northward expansion of temperate forests in North America are supported by palaeovegetation data. The expansion of xerophytic vegetation in mid-continental North America is consistent with palaeodata, although the extent may be over-estimated. The simulated expansion of xerophytic vegetation in Eurasia is not supported by the data. Analysis of an asynchronous coupling of one model to an equilibrium-vegetation model suggests vegetation feedback exacerbates this mid-continental drying and produces conditions more unlike the observations. Not all features of the simulations are robust: some models produce winter warming over Europe while others produce winter cooling. As a result, some models show a northward shift of temperate forests (consistent with, though less marked than, the expansion shown by data) and others produce a reduction in temperate forests. Elucidation of the cause of such differences is a focus of the current phase of the Palaeoclimate Modelling Intercomparison Project.
Resumo:
Results from nine coupled ocean-atmosphere simulations have been used to investigate changes in the relationship between the variability of monsoon precipitation over western Africa and tropical sea surface temperatures (SSTs) between the mid-Holocene and the present day. Although the influence of tropical SSTs on the African monsoon is generally overestimated in the control simulations, the models reproduce aspects of the observed modes of variability. Thus, most models reproduce the observed negative correlation between western Sahelian precipitation and SST anomalies in the eastern tropical Pacific, and many of them capture the positive correlation between SST anomalies in the eastern tropical Atlantic and precipitation over the Guinea coastal region. Although the response of individual model to the change in orbital forcing between 6 ka and present differs somewhat, eight of the models show that the strength of the teleconnection between SSTs in the eastern tropical Pacific and Sahelian precipitation is weaker in the mid-Holocene. Some of the models imply that this weakening was associated with a shift towards longer time periods (from 3–5 years in the control simulations toward 4–10 years in the mid-Holocene simulations). The simulated reduction in the teleconnection between eastern tropical Pacific SSTs and Sahelian precipitation appears to be primarily related to a reduction in the atmospheric circulation bridge between the Pacific and West Africa but, depending on the model, other mechanisms such as increased importance of other modes of tropical ocean variability or increased local recycling of monsoonal precipitation can also play a role.
Resumo:
Simulations with the IPSL atmosphere–ocean model asynchronously coupled with the BIOME1 vegetation model show the impact of ocean and vegetation feedbacks, and their synergy, on mid- and high-latitude (>40°N) climate in response to orbitally-induced changes in mid-Holocene insolation. The atmospheric response to orbital forcing produces a +1.2 °C warming over the continents in summer and a cooling during the rest of the year. Ocean feedback reinforces the cooling in spring but counteracts the autumn and winter cooling. Vegetation feedback produces warming in all seasons, with largest changes (+1 °C) in spring. Synergy between ocean and vegetation feedbacks leads to further warming, which can be as large as the independent impact of these feedbacks. The combination of these effects causes the high northern latitudes to be warmer throughout the year in the ocean–atmosphere-vegetation simulation. Simulated vegetation changes resulting from this year-round warming are consistent with observed mid-Holocene vegetation patterns. Feedbacks also impact on precipitation. The atmospheric response to orbital-forcing reduces precipitation throughout the year; the most marked changes occur in the mid-latitudes in summer. Ocean feedback reduces aridity during autumn, winter and spring, but does not affect summer precipitation. Vegetation feedback increases spring precipitation but amplifies summer drying. Synergy between the feedbacks increases precipitation in autumn, winter and spring, and reduces precipitation in summer. The combined changes amplify the seasonal contrast in precipitation in the ocean–atmosphere-vegetation simulation. Enhanced summer drought produces an unrealistically large expansion of temperate grasslands, particularly in mid-latitude Eurasia.
Resumo:
The response of the six major summer monsoon systems (the North American monsoon, the northern Africa monsoon, the Asia monsoon, the northern Australasian monsoon, the South America monsoon and the southern Africa monsoon) to mid-Holocene orbital forcing has been investigated using a coupled ocean–atmosphere general circulation model (FOAM), with the focus on the distinct roles of the direct insolation forcing and oceanic feedback. The simulation result is also found to compare well with the NCAR CSM. The direct effects of the change in insolation produce an enhancement of the Northern Hemisphere monsoons and a reduction of the Southern Hemisphere monsoons. Ocean feedbacks produce a further enhancement of the northern Africa monsoon and the North American monsoon. However, ocean feedbacks appear to weaken the Asia monsoon, although the overall effect (direct insolation forcing plus ocean feedback) remains a strengthened monsoon. The impact of ocean feedbacks on the South American and southern African monsoons is relatively small, and therefore these regions, especially the South America, experienced a reduced monsoon regime compared to present. However, there is a strong ocean feedback on the northern Australian monsoon that negates the direct effects of orbital changes and results in a strengthening of austral summer monsoon precipitation in this region. A new synthesis is made for mid-Holocene paleoenvironmental records and is compared with the model simulations. Overall, model simulations produce changes in regional climates that are generally consistent with paleoenvironmental observations.
Resumo:
Simulations of the climatic response to mid-Holocene (6 ka BP) orbital forcing with two coupled ocean–atmosphere models (FOAM and CSM) show enhancement of monsoonal precipitation in parts of the American Southwest, Central America and northernmost South America during Northern Hemisphere summer. The enhanced onshore flow that brings precipitation into Central America is caused by a northward displacement of the inter-tropical convergence zone, driven by cooling of the equatorial and warming of the northern subtropical and mid-latitude ocean. Ocean feedbacks also enhance precipitation over the American Southwest, although the increase in monsoon precipitation there is largely driven by increases in land-surface temperature. The northward shift in the equatorial precipitation band that causes enhanced precipitation in Central America and the American Southwest has a negative feedback effect on monsoonal precipitation in northern South America. The simulations demonstrate that mid-Holocene aridity in the mid-continent of North America is dynamically linked to the orbitally induced enhancement of the summer monsoon in the American Southwest, with a spatial structure (wet in the Southwest and dry in the mid-continent) similar to that found in strong monsoon years today. Changes in winter precipitation along the west coast of North America, in Central America and along the Gulf Coast, caused by southward-displacement of the westerly storm tracks, indicate that changes in the Northern Hemisphere winter monsoon also play a role in regional climate changes during the mid-Holocene. Although the simulations with FOAM and CSM differ in detail, the general mechanisms and patterns are common to both. The model results thus provide a coherent dynamical explanation for regional patterns of increased or decreased aridity shown by vegetation, lake status and aeolian data from the Americas
Resumo:
Runoff fields over northern Africa (10–25°N, 20°W–30°E) derived from 17 atmospheric general circulation models driven by identical 6 ka BP orbital forcing, sea surface temperatures, and CO2 concentration have been analyzed using a hydrological routing scheme (HYDRA) to simulate changes in lake area. The AGCM-simulated runoff produced six-fold differences in simulated lake area between models, although even the largest simulated changes considerably underestimate the observed changes in lake area during the mid-Holocene. The inter-model differences in simulated lake area are largely due to differences in simulated runoff (the squared correlation coefficient, R2, is 0.84). Most of these differences can be attributed to differences in the simulated precipitation (R2=0.83). The higher correlation between runoff and simulated lake area (R2=0.92) implies that simulated differences in evaporation have a contributory effect. When runoff is calculated using an offline land-surface scheme (BIOME3), the correlation between runoff and simulated lake area is (R2=0.94). Finally, the spatial distribution of simulated precipitation can exert an important control on the overall response.
Resumo:
Global syntheses of palaeoenvironmental data are required to test climate models under conditions different from the present. Data sets for this purpose contain data from spatially extensive networks of sites. The data are either directly comparable to model output or readily interpretable in terms of modelled climate variables. Data sets must contain sufficient documentation to distinguish between raw (primary) and interpreted (secondary, tertiary) data, to evaluate the assumptions involved in interpretation of the data, to exercise quality control, and to select data appropriate for specific goals. Four data bases for the Late Quaternary, documenting changes in lake levels since 30 kyr BP (the Global Lake Status Data Base), vegetation distribution at 18 kyr and 6 kyr BP (BIOME 6000), aeolian accumulation rates during the last glacial-interglacial cycle (DIRTMAP), and tropical terrestrial climates at the Last Glacial Maximum (the LGM Tropical Terrestrial Data Synthesis) are summarised. Each has been used to evaluate simulations of Last Glacial Maximum (LGM: 21 calendar kyr BP) and/or mid-Holocene (6 cal. kyr BP) environments. Comparisons have demonstrated that changes in radiative forcing and orography due to orbital and ice-sheet variations explain the first-order, broad-scale (in space and time) features of global climate change since the LGM. However, atmospheric models forced by 6 cal. kyr BP orbital changes with unchanged surface conditions fail to capture quantitative aspects of the observed climate, including the greatly increased magnitude and northward shift of the African monsoon during the early to mid-Holocene. Similarly, comparisons with palaeoenvironmental datasets show that atmospheric models have underestimated the magnitude of cooling and drying of much of the land surface at the LGM. The inclusion of feedbacks due to changes in ocean- and land-surface conditions at both times, and atmospheric dust loading at the LGM, appears to be required in order to produce a better simulation of these past climates. The development of Earth system models incorporating the dynamic interactions among ocean, atmosphere, and vegetation is therefore mandated by Quaternary science results as well as climatological principles. For greatest scientific benefit, this development must be paralleled by continued advances in palaeodata analysis and synthesis, which in turn will help to define questions that call for new focused data collection efforts.
Resumo:
Biomization provides an objective and robust method of assigning pollen spectra to biomes so that pollen data can be mapped and compared directly with the output of biomgeographic models. We have tested the applicability of this procedure, originally developed for Europe, to assign modern surface samples from China to biomes. The procedure successfully delineated the major vegetation types of China. When the same procedure was applied to fossil pollen samples for 6000 years ago, the reconstructions showed systematic differences from present, consistent with previous interpretations of vegetation changes since the mid-Holocene. In eastern China, the forest zones were systematically shifted northwards, such that cool mixed forests displaced taiga in northeastern China, while broad-leaved evergreen forest extended c. 300 km and temperate deciduous forestc. 500–600 km beyond their present northern limits. In northwestern China, the area of desert and steppe vegetation was reduced compared to present. On the Tibetan Plateau, forest vegetation extended to higher elevations than today and the area of tundra was reduced. These shifts in biome distributions imply significant changes in climate since 6000 years ago that can be interpreted qualitatively as a response to orbital forcing and its secondary effects on the Asian monsoon.
Resumo:
We ran a sequence of climate model experiments for 6000 years ago, with land-surface conditions based on a realistic map of palaeovegetation, lakes and wetlands, to quantify the effects of land-surface feedbacks in the Saharan region. Vegetation-induced albedo and moisture flux changes produced year-round warming, forced the monsoon to 17°–25°N two months earlier, and shifted the precipitation belt ≈300 km northwards compared to the effects of orbital forcing alone. The addition of lakes and wetlands produced localised changes in evaporation and precipitation, but caused no further extension of the monsoon belt. Diagnostic analyses with biome and continental hydrology models showed that the combined land-surface feedbacks, although substantial, could neither maintain grassland as far north as observed (≈26°N) nor maintain Lake “MegaChad” (330,000 km²).